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In the 1980s to 1990s, studies of perceptual learning
focused on the specificity of training to basic visual
attributes such as retinal position and orientation. These
studies were considered scientifically innovative since
they suggested the existence of plasticity in the early
stimulus-specific sensory cortex. Twenty years later,
perceptual training has gradually shifted to potential
applications, and research tends to be devoted to
showing transfer. In this paper we analyze two key
methodological issues related to the interpretation of
transfer. The first has to do with the absence of a control
group or the sole use of a test–retest group in traditional
perceptual training studies. The second deals with claims
of transfer based on the correlation between
improvement on the trained and transfer tasks. We
analyze examples from the general intelligence literature
dealing with the impact on general intelligence of
training on a working memory task. The re-analyses
show that the reports of a significantly larger transfer of
the trained group over the test–retest group fail to
replicate when transfer is compared to an actively
trained group. Furthermore, the correlations reported in
this literature between gains on the trained and transfer
tasks can be replicated even when no transfer is
assumed.

Introduction

In the 1980s to 1990s, many studies reported that
visual training effects are specific to the position of the
trained stimuli in the visual field (e.g., Ahissar &
Hochstein, 1997; Fiorentini & Berardi, 1980; Herzog &
Fahle, 1997; Karni & Sagi, 1991) and to the trained
orientations (Ahissar & Hochstein, 1993; Fiorentini &
Berardi, 1981; Levi & Polat, 1996). These findings were

striking from the perspective of the specificity of early
sensory cortices, which represent these parameters in a
segregated manner. Additionally, training was specific
to the trained task (e.g., Ahissar & Hochstein, 1993;
Herzog & Fahle, 1997).

However, with the growing awareness of the
potential clinical applications of perceptual training
(boosted largely by Tallal et al., 1996), scientists
studying cognition became increasingly interested in
the generalization of training. The rationale was as
follows: If we can pinpoint the limitations on an
individual’s perceptual mechanism, and given that the
brain is plastic, we can train this individual on a task
directed toward this mechanism and thus improve its
performance. This training process was expected to
‘‘release the bottleneck’’ that limits perceptual perfor-
mance in a broad range of conditions. However, this
reasoning turned out to be inconsistent with the
findings of learning specificity, as well as with
theoretical accounts that viewed task-specific improve-
ment as reflecting a greater ability to decipher task-
specific signal from noise (e.g., Ahissar & Hochstein,
2004; Ahissar, Nahum, Nelken, & Hochstein, 2009;
Dosher & Lu, 1998).

When viewed from a broader perspective, the
perceptual learning literature of the 1980s to 1990s that
reported this stimulus and task specificity clearly
coincides with the vast earlier literature on skill
acquisition in general. This literature consistently
showed that acquired expertise is specific to both the
trained stimuli and their trained behavioral relevance.
One of the best studied cases is that of expert chess
players who have vastly enhanced working memory
(WM) abilities. However, their enhanced WM skills are
specific to chess moves, and do not extend even to
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random arrangements of the same pieces on the chess
board (Chase & Simon, 1973).

Perhaps the most desired cognitive skill is intelli-
gence. Intelligence is often considered to be reflected in
the common statistical factor underlying performance
of academically related reasoning tasks (defined as g
and often dubbed fluid intelligence, which refers to
potential abilities rather than acquired, crystalized
skills; Cattell, 1987). This general ability is tightly
correlated with WM skills (Kyllonen & Christal, 1990).
One of the most extensively studied WM tasks is the N-
back task, in which individuals are exposed to a
sequence of stimuli and are asked to indicate whenever
a stimulus is a repetition of a stimulus presented N
steps backwards. This task is challenging, since any
stimulus can be a repetition of the previous one. It thus
requires continuous tracking of external stimuli and on-
line updating of the internal representation of the
anticipated stimulus. Performance was shown to be
highly correlated with performance on intelligence
measures such as matrix completion, and is known to
have a high load on g (e.g., Conway, Kane, & Engle,
2003; Engle, Kane, & Tuholski, 1999a; Kyllonen &
Christal, 1990). This robust correlation led to the hope
that intensive training would boost performance on the
N-back task, which would generalize to enhanced
intelligence scores.

The idea that intelligence can be boosted by training
on a specific task seems radical since fluid intelligence is
thought of as a genetically related trait, although
perhaps affected by long-term educational and cultural
factors. However, it is not conceptually different from
boosting basic perception by enhancing attentional
allocation abilities, or improving the efficiency of
implicit statistical inferences, which are the outcomes
attributed to playing action video games (Green,
Pouget, & Bavelier, 2010). The Flynn effect (Flynn,
1987) suggests that fluid intelligence is indeed suscep-
tible to change. The Flynn effect is the observation that
performance of tasks such as matrix completion has
improved by 2–10 points every decade since the earliest
measurements in the 1930s. This improvement is
attributed to the fact that education has gradually
placed more emphasis on abstract (rather than only
concrete), context-free analogies. The Flynn effect
indicates some generalization, since individuals are not
specifically trained on the matrix completion task, and
yet their performance on this task improved. However,
WM training studies make their claim to generalization
based on a short training period with a very limited set
of tasks.

In this paper we analyze two important methodo-
logical difficulties undermining studies that have made
this claim. The first is what constitutes a good control,
and the second is whether correlations between gains
on the trained and untrained task provide evidence for

transfer. Both questions are highly pertinent to studies
on perceptual training, as described below.

Forming and testing a valid control
group

Lessons from WM training

In the WM training literature, many studies only
include a passive control group in addition to the
experimental group trained on some form of the N-
back task. Passive control refers to a group adminis-
tered the same series of pre- and posttests, with a
similar time interval, but with no intervening training
procedure. This group controls for test and retest
effects, but does not control for very broad placebo
effects.

For example, one of the most frequently cited papers
in the WM training literature (Jaeggi, Buschkuehl,
Jonides, & Perrig, 2008; more than 1,000 citations!)
concludes that training transferred to enhanced intel-
ligence based on two observations. First, subgroups
that trained with WM tasks showed more gains than
passive controls. Specifically, transfer was compared to
no practice at all, which could perhaps be attributed to
a placebo effect. Second, four subgroups were trained
with a different number of training sessions. The
benefits on the untrained intelligence task differed
across these subgroups, and were monotonically larger
for subgroups that had a larger number of training
sessions. Jaeggi et al.’s (2008) interpretation was that
longer training periods induced a larger amount of
improvement and transfer.

This interpretation seems compelling. However, the
different subgroups were trained at different sites. A
valid design would either be to conduct the entire
experiment at one site, or divide each site into
subgroups with different amounts of training per site,
so that training sites and amount of training would not
be confounded. These sites may thus have differed in
terms of the experimenters’ and/or participants’ moti-
vation. If so, the different amounts of practice as well
as the different extents of transfer could reflect different
degrees of enthusiasm with respect to the training
procedure. In fact, when the experiment was replicated
without these confounds, Chooi and Thompson (2012)
obtained null results. The observation that different
training sites (or different labs) yield different amounts
of improvement for the same training procedure is
rather typical (e.g., Jaeggi and colleagues consistently
reported transfer—Jaeggi et al., 2008; Jaeggi, Busch-
kuehl, Jonides, & Shah, 2011; Jaeggi, Buschkuehl,
Shah, & Jonides, 2014; Klingberg et al., 2005—versus
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Redick et al., 2013, who used an active control and
reported no transfer). Therefore, the importance of this
dissociation is not only theoretical. Furthermore, the
intuitive interpretation that longer training protocols
yield larger amounts of improvement and transfer,
though seemingly straightforward, is not supported by
a recent meta-analysis (Au et al., 2014). It showed that
across training studies, there was no correlation
between the total amount of practice and the trans-
ferred gains. Similarly there was no correlation between
the total gain on the trained task and the amount of
transfer. This tends to weaken the authors’ interpreta-
tions and it can only be concluded that the Jaeggi et al.
(2008) study does not provide clear evidence of transfer
from training on WM to enhanced intelligence.

This same meta-analysis of WM training studies (Au
et al., 2014) identified a key difference between the
transfer reported by studies that only had a passive
control and studies that had an active control; namely,
the former reported a significantly larger transfer than
the latter (detailed in Jacoby & Ahissar, 2013). In fact,
studies that used an active control group that practiced
a challenging non-WM task (e.g., visual search) found
no transfer (e.g., Owen et al., 2010; Redick et al., 2013;
see also the meta-analysis by Melby-Lervåg & Hulme,
2013 and reviews by Morrison & Chein, 2011 and
Shipstead et al., 2012).

The case of control in perceptual learning

Traditionally, perceptual learning studies had no
control group. Their main goal was to show specificity;
hence control was not essential. However, when the
emphasis is on transfer effects, a valid control is
required to assess the mechanisms underlying general-
ization. The importance of such a control has been
somewhat overlooked in perceptual studies, perhaps
due to the assumption that performance in perceptual
tasks is mainly determined by peripheral sensory
mechanisms.

In fact, an earlier training study conducted by our
group suffered from this flaw. Banai and Ahissar (2009)
trained a group of individuals with language and
reading difficulties on a series of auditory discrimina-
tion tasks. Our participants’ pretraining performance
was very poor on these tasks compared to their
adequately reading peers, and so was their verbal WM
score. After several weeks of training, their perfor-
mance on the trained perceptual tasks reached the level
of their untrained, adequately reading peers. A post-
training test on their verbal WM skills showed that it
also improved and reached the level of their (untrained)
peers. We interpreted these observations as indicating
transfer from the perceptual training procedure to
verbal WM. But this could have reflected more vigilant

posttraining performance stemming from general as-
pects of our training protocol. It may have induced
more rewarding experiences in school, either due to
personal attention, or due to our small tokens of
appreciation for participation. Moreover, given that we
had no passive control group with similar pretraining
difficulties, it may have reflected a retest effect,
particularly since this standard test, like many other
standard tests, had only one version, so we used the
same items.

Another type of inadequate control is a group that
does not train (passive control), and hence controls
only for test retest effects. For example, Deveau and
colleagues (Deveau et al., 2014a, b) administered a
visual training protocol composed as a video game
designed to enhance general visual skills. In both
studies, posttraining performance was better than
pretraining performance on a variety of tasks, including
visual acuity (measured with self-paced standard eye
charts), contrast sensitivity, and peripheral acuity.
Moreover, posttraining performance exceeded that of
passive controls. However, as in our earlier auditory
studies, the improved posttraining performance could
have been due to factors that did not stem directly from
their specific perceptual training regime, such as
supportive meetings with enthusiastic experimenters.

Importantly, performance even on low-level tasks
aimed to assess acuity and contrast sensitivity is
affected by nonsensory factors. For example, when
participants are primed (with a mindset) that pilots
have excellent vision, their performance on basic visual
tasks improves when they are asked to take the role of
pilots (by flying a realistic flight simulator; Langer,
Djikic, Pirson, Madenci, & Donohue, 2010). Similarly,
action video gamers, and individuals trained with
action video games for several weeks, perform better on
contrast sensitivity tasks (Li, Polat, Makous, &
Bavelier, 2009). This improvement has been attributed
to improved top-down control of task-related infor-
mation (Green & Bavelier, 2012). Recent observations
nevertheless suggest that this enhancement requires
some task-specific training, and that gamers’ superior-
ity on simple visual tasks reflects better top-down
control rather than modified sensory mechanisms
(Bejjanki et al., 2014).

The impact of state of mind on performance on
simple perceptual tasks suggests that even active
control groups may not constitute a sufficient control
since participants’ expectations can significantly affect
their performance. For this reason, the active control
group should train on a similarly challenging task.
Perceptual learning researchers’ traditional intuition
that a control group should be presented with similar
stimuli (e.g., Polat, Ma-Neim, Belkin, & Sagi, 2004)
rather than with a similarly engaging task fails to
control for this type of general effect.
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However, even when the control group plays a
challenging game, their more specific expectations, as
well as those of the experimenters, may impact their
posttest performance. For example, studies by Green
and Bavelier (2003, 2006a, 2006b, 2007, 2012) and
Green, Li, and Bavelier (2010) reported that individuals
who practiced action video games performed better
than those who practiced nonaction games (e.g., Tetris,
Sims). Therefore, in these studies the active control also
had a challenging game. Nevertheless, these findings
have been contested in several studies conducted in labs
with different expectations (e.g., Boot, Blakely, &
Simons, 2011; Boot, Kramer, Simons, Fabiani, &
Gratton, 2008; Lee et al., 2012; Van Ravenzwaaij,
Boekel, Forstmann, Ratcliff, & Wagenmaker, 2014).
These researchers claimed that the difference in the
outcomes obtained in different labs reflects the
experimenters’ bias, which affects participants’ antici-
pation of improvement, and consequently their per-
formance (Boot, Simons, Stothart, & Stutts, 2013; see
review in Kristjánsson, 2013). Importantly (as in the
case of multisite training in the Jaeggi et al., 2008
paper), undocumented (and probably unintentional)
differences between training protocols at different sites
may have had a greater impact on the outcomes than
the explicit choice of training procedure. These
differences may be as influential in perceptual training
as they are in training for more complex cognitive
skills.

Correlation between training gains

A detailed analysis of a specific example of WM
training

Since the magnitude of training generalization is
often moderate (Jacoby & Ahissar, 2013; Melby-Lervåg
& Hulme, 2013), it is natural to seek additional
supportive evidence. One such line involves investigat-
ing the correlation between practice-induced gains on
the trained task and performance enhancement on
untrained tasks. This analysis seems compelling, but as
shown below, significant correlations with a magnitude
well within the reported range can be obtained with no
transfer.

To clarify this point we present a detailed analysis of
a specific case of WM training (Jaeggi et al., 2011),
where the claim of generalization relies uniquely on the
observation of such positive correlations. Based on the
raw data (cordially provided by the authors), we
suggest an alternative and coherent explanation for all
of the experimental observations, assuming no transfer.

Jaeggi et al. (2011) trained two groups of third
graders, one (N ¼ 32) on general knowledge and

vocabulary (active control), and the other (N¼ 32) on a
spatial WM task. This initial study yielded null results.
Namely, the two groups did not differ in their general
intelligence scores, either before or after training,
suggesting no transfer (using two standard test:
Raven’s matrices and Test of Nonverbal Intelligence;
‘‘there was no significant group 3 test-session interac-
tion’’; Jaeggi et al., 2011, p. 10081). However, rather
than acknowledging null results, Jaeggi et al. (2011)
argued that the correlation within the experimental
group between gains on the trained WM task and the
intelligence tests they administered was indicative of
transfer. This argument may seem intuitive: Those who
benefit from training on one task are expected to show
gains on another task. However, such a correlation can
be obtained without any transfer (Jacoby & Ahissar,
2013; Tidwell, Dougherty, Chrabaszcz, Thomas, &
Mendoza, 2014).

Consider the scenario of pre- and posttraining
measurements. Each participant has four scores: the
pre- and posttraining scores on trained task A, X1,A

and X2,A, respectively, and the pre- and posttraining
scores on test task B, X1,B and X2,B, respectively.

The correlation between training gains (post minus
pre) in these two tasks, DA¼X2,A� X1,A and DB¼X2,B

� X1,B, can be formulated as follows:

CorrðDA;DBÞ ¼
covðDA;DBÞ

stdðDAÞstdðDBÞ
ð1Þ

where:

covðDA;DBÞ ¼ covðX2;A;X2;BÞ þ covðX1;A;X1;BÞ
� covðX2;A;X1;BÞ � covðX1;A;X2;BÞ ð2Þ

Therefore the correlation in gains can be positive
regardless of the means of the populations.

In the case of Jaeggi et al. (2011) and based on the
authors’ original data, the covariance between scores
on the two tasks within sessions was larger than
(session 2) or similar to (session 1) the covariance
across sessions, yielding a positive covariance between
gains in the two tasks.

In order to understand whether the specific covari-
ance matrix obtained by Jaeggi et al. can reflect other
factors rather than transfer, we assumed the following
general factors:

� A common factor that contributes to the perfor-
mance of two tasks that are initially correlated, for
example in the case of WM and intelligence tasks
(see Daneman & Carpenter, 1980).

� Common factors that contribute to the performance
of tasks assessed within the same session (‘‘good’’ vs.
‘‘bad’’ day).

� Common factors that contribute to the performance
of the same task across sessions (i.e., bottlenecks
that are not resolved by a second assessment).
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As shown in the Appendix, assuming that perfor-
mance of each task reflects a linear combination of
these five factors (commonality between tasks, two
sessions, and two tasks), we can replicate the covari-
ance matrix of Jaeggi et al., 2011, without assuming any
transfer. Importantly, the calculated factor loadings are
all positive and within the expected cognitive range
(Engle et al., 1999b), as detailed in the Appendix.

Figures 1–3 demonstrate that the factors described
above are sufficient to fully replicate all the results
reported in Jaeggi et al. (2011). Figure 1 compares the
observed correlation between gains in WM and in
intelligence scores (left, their replotted supplemental
figure S3B) with one rendition of a simulation that used
their unpublished correlation structure (namely, with
no difference in the mean performance of the subpop-
ulations of high and low WM ‘‘gainers,’’ respectively).
This experimentally observed correlation was inter-
preted in Jaeggi et al. (2011) as ‘‘suggesting that the
greater the training gain, the greater the transfer’’ (p.
10083). However, this correlation (r¼ 0.42, p , 0.05) is
similar to the one obtained in our Monte-Carlo
simulation. Quantitatively, 37.6% of the simulations
(out of 10,000 renditions) had a larger (more signifi-
cant) r value than the one reported in their paper, thus
indicating that the significant correlation found in the
experiment is consistent with the simulated data, which
did not assume transfer.

Another analysis proposed by Jaeggi et al. (2011) has
a similar conceptual flaw. They divided the group
trained on the WM task into two subgroups (median
split) as a function of high and low gains on the trained
WM task. They found that the subgroup that had

larger WM gains also had larger intelligence gains, and
interpreted this observation as another indication of a
transfer effect. As explained in Tidwell et al. (2014), this
result is completely explained by the same principles.

Intuitively, this a-posteriori criterion biases the
assignment of individuals to the two groups in the
following manner. Individuals who have large differ-
ences between pre- and posttraining performance on
the trained task (‘‘large gain’’ subgroup) tend to be
individuals who have lower pretraining scores and
higher posttraining scores on this task. These individ-
uals also tend to have lower pretraining scores on the
untrained task due to the pretraining correlation
between the trained and untrained tasks. In fact, the
simulated F statistics (the main ANOVA statistics used
in the paper to assess the transfer effect) were larger
than the reported F statistics, F(2, 58)¼ 3.23, in 38.6%
of the 10,000 simulations. This means that the values
reported in the study lie well within the expected range
of our simulation. Furthermore, using the planned
contrast method, Jaeggi et al. (2011) reported a
significant difference between the subgroups with large
and small training gains (p , 0.05), and no significant
differences between the active control group and the
subgroup with small training gains. Our simulations
(with the same simulation parameters as above) also
reproduced this pattern: In 47% of the renditions, the
first contrast was significant (p , 0.05) and the second
contrast was not (0.05 , p , 0.95). Figure 2 shows the
pre- and post-WM scores in the experiment (left two
plots) and in the simulation (right two plots). The
similarity of the plots stems from the a-posteriori

Figure 1. Gains in intelligence scores (matrix reasoning) as a function of gains on the trained WM task (N-back). (A) The original

observations in Jaeggi et al. (2011; plotted based on personal communication with S. M. Jaeggi and M. Buschkuehl, and similar to the

original supplemental figure 3sb). (B) One rendition of the simulated data, which was artificially designed to have no transfer. The

similarity between the two plots demonstrates the similarity between the r value reported by Jaeggi et al. (2011) and that obtained

by the simulation. The details of the simulation procedure are provided in the Appendix.
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division into subgroups rather than from a transfer
effect.

Jaeggi et al. (2011) further reported a larger transfer
for the subgroup with larger training gains than the
group with smaller training gains (and for the
intermediate transfer of the active control group).
These observations are plotted in the top left of Figure
3 (reported in figure 4a of Jaeggi et al., 2011). Figure 3
top right shows the transfer effects in our simulation.
The simulated data were generated so that all scores
were chosen from a single distribution of performance,
but were subsequently divided into two subgroups with
the posthoc criterion of the original paper (below and
above median gains on the trained task). The similarity
of the right and left top plots of Figure 3 indicates that
the difference between the subgroups is fully repro-
duced in the simulated data.

Jaeggi et al. (2011) retested the participants several
months after training to evaluate the long-term
retention of the transfer effects. These measures
suggested the retention of this effect, as shown in
Figure 3 bottom left. But, as shown in the bottom

right of Figure 3, this long-term retention was also
fully reproduced by the simulation by using this
posthoc selection criterion. Finally, we reproduced
the original ANCOVA test used to attempt to control
for numerical differences between the pretest scores
of participants with the large and small training
gains: 81.4% of our simulations had a larger (more
significant) F value than the one reported in the paper
(3.06) on a univariate ANCOVA with the mean
standardized gain as the dependent variable and the
pretest scores as the covariate. Additionally, 6.6% of
our simulations had a smaller p value on this test
than the one reported in the paper (p , 0.01) for the
follow-up session.

To conclude, the authors should have accepted their
own null findings based on their a-priori design.
Correlations in gains should only have been used to
claim transfer when the magnitude of the experimental
effects was larger than that which could be obtained
based on the a-posteriori selection criterion. As our
analysis showed, this was not the case.

Figure 2. Pre (top) and post (bottom) WM and intelligence scores in the experiment (left) and in one rendition of the simulation

(right). The open symbols indicate the scores of the individuals composing the two a-posteriori selected subgroups (blue circles for

low training gain and red squares for high training gain). Note that individuals with low WM gains tend to have relatively high WM

scores pre training and relatively low WM scores post training. Filled symbols denote the means of these subgroups. The plots

illustrate the similarity between the experimental results and the simulation.

Journal of Vision (2015) 15(10):6, 1–13 Jacoby & Ahissar 6

Downloaded From: http://jov.arvojournals.org/ on 09/09/2015



We next examined what would be the expected
pattern of results in Jaeggi et al. (2011) had the
correlation in gains indeed reflected a genuine
transfer. First, we would expect that the two
subgroups (determined by WM gains) would differ in
their posttraining intelligence scores. Those that had a
higher WM gain would be expected to have higher
post training intelligence scores, which was not the
case in the original study (where the two subgroups
differed mainly in their pre-training scores). Second,
we would expect that the entire group’s posttraining
intelligence scores would be more variable than their
pretraining scores, since training with WM had a
different effect (transfer) on different individuals. This
was not the case either. Third, if transfer is assumed in
a simulation (transfer was simulated as 1 SD between
means of the subgroups), the Cohen’s d of the
difference in intelligence gains between the subgroups
should have been larger than the reported one in
99.7% of the simulations. The mean Cohen’s d of the
simulations in this case was 1.8, whereas the experi-
mental one was only 0.8. Therefore, if real transfer
were involved, we would expect a larger degree of
estimated transfer than the one reported by Jaeggi et
al. (2011).

Additional examples from the WM literature

Jaeggi et al. (2011) is one of many examples of using
correlated performance benefits as an indication of
transfer in the literature of WM training. For example,
Chein and Morrison (2010) tested participants on a
cognitive battery that included fluid intelligence,
reasoning tasks, reading comprehension, cognitive
control, and WM tasks. They then trained these
participants for 4 weeks on two variants of WM tasks.
This group was subsequently tested with the same
cognitive battery as in the pretraining session. A
passive control group (21 students) was administered
the test–retest battery without training. The authors
claimed to have found ‘‘a strong and statistically
significant relationship between trained participants’
spatial WM span increases and reading comprehension
improvement, r(18) ¼ 0.49, p , 0.005’’ (p. 197). The
authors further claimed that their transfer effect was
selective, in the sense that there was no similar
correlation in the control group, r(20)¼ 0.097, p¼ 0.67.
As explained above, this observation can be fully
accounted for on the basis of Equation 1, even in the
absence of transfer. This study also demonstrates the
other problem (subdivision according to gains). They
divided their training group into successful (the 15
participants with higher spatial-WM gains in the

Figure 3. Immediate (top) and long-term (bottom) gains in the (fluid) intelligence tests (Gf) of the two experimental subgroups

determined a-posteriori by the magnitude of their training gains (denoted in red and green) and the active control group (denoted in

blue). Left: The experimental data, replotted (figure 4a, b of Jaeggi et al., 2011). Right: The results of the simulation. Mean transfer

(Cohen’s d) for 10,000 renditions of our simulation are plotted for each subgroup. No transfer was assumed in the simulation. The

posthoc selection criterion was sufficient to yield ‘‘transfer’’ results. Columns represent standardized gains. The effect size of the

contrast between the subgroups was computed with Cohen’s d. The effect sizes of the empirical data are consistent with those

yielded by the simulations. For example, 31% of the Cohen’s d computed by the simulation for the large-gain versus small-gain

subgroups were larger than the experiment’s d (0.80).
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training group) and unsuccessful subgroups (the rest of
the group). When they compared the successful group
to the control group, they found marginally significant
and significant transfer effects for the cognitive control
and reading comprehension tasks, respectively.

A similar analysis was reported by Klingberg,
Forssberg, and Westerberg (2002), who trained chil-
dren with ADHD in an attempt to enhance intelligence
scores, as measured by Raven’s matrix completion task.
They claimed that ‘‘the association between the
reasoning task and the WM tasks is further substan-
tiated by the significant correlation between improve-
ment on the visuospatial WM task and improvement
on Raven’s Progressive Matrices’’ (p. 789). Similarly,
Schmiedek, Lövdén, and Lindenberger (2010) noted a
correlation between latent trained factors of episodic
memory and untrained ones, and used it as evidence of
transfer.

Similar cases in perceptual learning and the
video gaming literature

Similarly flawed interpretations have been in the
literature on perceptual learning. The aforementioned
study conducted by our group (Banai & Ahissar, 2009),
likewise suffered from this methodological flaw. As
described above, we trained individuals with language
and reading disabilities on auditory discrimination
tasks. We tested their verbal WM skills before and after
training and found improvement and observed gains in
WM. The trained group showed a marginally signifi-
cant correlation between improvement on the trained
perceptual task (two-tone discrimination) and on an
untrained WM task (Spearman rho¼ 0.59, p¼ 0.07).
We (Banai & Ahissar, 2009) interpreted this correlation
as supporting the suggestion that the improvement in
WM scores is specifically related to the two-tone
discrimination training.

This intuitive interpretation is quite common in the
literature of video game training. For example, Green
and Bavelier (2003) used the marginal correlation
between improvement in game scores and improve-
ment in attentional skills (adjusted r2¼ 0.43, p¼ 0.13;
see p. 536) to support a transfer claim between playing
action video games and enhanced attentional skills.
More recently, Anguera et al. (2013) trained elderly
individuals on a dual-task condition of an action video
game and used the correlation between improvement
in this trained condition (multitasking) and WM gains
to support the claim of transfer from training
multitasking in action video games to enhanced WM
capacity. They reported that ‘‘only the multi-tasking
[training] group exhibited a significant correlation
between multitasking cost reduction and improve-
ments on an untrained cognitive control task (delayed-

recognition with distraction) from pre- to post-
training’’ (p. 99). This reasoning presents the very
same methodological flaw (i.e., assuming that only the
dual task was initially correlated with WM, as would
be expected given the cognitive literature; Clapp,
Rubens, Sabharwal, & Gazzaley, 2011; Kane & Engle,
2000).

Note that methodological flaw does not only apply
to the correlation in behavioral gains. It also applies to
misinterpreting correlations between behavioral gains
and the magnitude of changes in related brain
measures that have the same characteristics where the
pretraining magnitude is correlated with the measured
behavior. These correlations are similarly sensitive to
the common factors described in the section titled ‘‘A
detailed analysis of a specific example of WM
training.’’ However, they are often used as indicating
training induced modulations of the underlying brain
mechanisms. For example, Wu et al. (2012) trained
participants on a first-person shooter game (FPS) and
tested them on an attentional visual field task (AVF).
The control group played a puzzle game. Event-
related potentials (ERPs) were measured during the
AVF test before and after training. Similar to Jaeggi et
al. (2011) the authors divided the FPS group into high
(FPSþ) and low (FPS�) performers according to their
improvement in accuracy on the AVF test, and
compared the mean gains in amplitudes of ERP
components (P2 and P3). Changes in the ERP
components were only observed in the FPSþ group,
and overall there was a main effect for group (the
groups were FPSþ, FPS�, and control). The authors
interpreted this finding as demonstrating ‘‘a direct
causal relationship between playing an FPS video
game and the neural activity that supports spatial
selective attention’’ (Wu et al., 2012, p. 1290).
However, this interpretation suffers from the same
methodological problems. Pretraining correlations
together with the posthoc splitting of the training
group according to training gains can again account
for the results, even in the absence of a causal relation.
We should note that we assume pretraining correla-
tions between ERPs and behavioral accuracy, which
were measured simultaneously, but the correlations
were not reported. Given this assumption, figure 3 in
their paper, which shows differences in changes in
neural activity between the control group and the two
sub groups defined based on training gains (FPSþ and
FPS�), is completely analogous to figure 3 in Jaeggi et
al. (2011), which shows transfer gains in similarly
selected subgroups (defined based on posthoc training
gains). In both cases the more parsimonious inter-
pretation is the one that does not imply a causal
relation, as our simulations demonstrate (see our
Figure 3).
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Conclusion

In this paper we discussed two methodological issues
in the WM training literature: the lack of a valid
control group with similar challenges and characteris-
tics, and the overinterpretation of correlated gains
between training and transfer tasks. We analyzed two
studies in depth (Jaeggi et al., 2008; Jaeggi et al., 2011)
to highlight general methodological difficulties that
undermine many other studies in the domains of WM,
video games, and perceptual learning. In particular,
training studies tend to fortify partial findings by a-
posteriori selection of supportive evidence.

The aim of these analyses is not to discourage further
studies in the field of training, or the assessment of
potential transfer. Rather it stresses the need to analyze
nonintuitive methodological areas, which should be
carefully addressed in future studies to achieve a better
understanding of the actual factors that determine
generalization.

Keywords: perceptual learning, perceptual training,
working memory, learning transfer, generalization
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Appendix

Details of the Monte-Carlo simulations

We created multiple renditions of populations of
simulated participants and modeled the performance of
each participant in every rendition as a multivariate
Gaussian distribution (the same means as the empirical
data and the same covariance matrix). We then
repeated the posthoc selection process described in
Jaeggi et al., 2011 for each rendition, by splitting into
subgroups based on the training gains. We show that
this a-posteriori division replicated all the statistical
results reported in Jaeggi et al. (2011) by comparing the
empirical statistical results with the expected results
from multiple renditions of the simulation.

In this simulation, each participant’s score is
represented as a five-dimensional random variable X¼
(X1,W, X1,G, X2,W, X2,G, X3,G).
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X1,W and X2,W are scalar random variables which
represent pre-WM and post-WM scores, respectively.
X1,G, X2,G, and X3,G are random variables that
represent standardized pretraining, posttraining, and
follow-up measures of fluid intelligence, respectively.
These scores combine Raven’s Standard Progressive
Matrices and the Test of Nonverbal Intelligence. The
vector with the simulated scores of each subject (X) was
sampled from the same multivariate Gaussian distri-
bution X ; N(l,R). The mean (l) and covariance
matrix (R) were taken from the average of the entire
WM training group (data provided by S. M. Jaeggi &
M. Buschkuehl, personal communication, October
2013) and were:

l ¼ ðl1;W;l1;G;l2;W;l2;G;l3;GÞ
¼ ð2:10; 3:24; 2:92; 3:50; 3:64Þ:

Other than a normalization constant and a minor
difference in the treating of missing data, these are
identical to Jaeggi et al., 2011; Table 1, second row.

The covariance matrix was calculated according to
the correlation matrix and the empirical standard
deviation for each task, as presented in Table A1.

For the active control group, each participant’s
scores were given by a similar five-dimensional vector
XAC ¼ (X1,C, X1,G, X2,C, X2,G,, X3,G). Again, XAC was
randomized from the distribution N(lAC, RAC) where
the mean lAC ¼ (0.59, 3.29, 0.58, 3.51, 3.74) was
computed from empirical data. The covariance matrix
was the empirical covariance matrix of the control
group (see Table A2).

Having established the structure of the simulation, we
simulated the statistical posthoc selection criterion of the
original paper by splitting the group trained with WM
into two subgroups with large and small WM gains
(below and above the median of DW¼X2,W�X1,W). The
results, presented in the main text (Figures 1 and 2),
show the outcome of this a-posteriori selection criterion
(i.e., that it was sufficient to generate the results in Jaeggi
et al. (2011) even though we introduced no transfer).

In order to quantitatively compare the reported
statistical results to our simulations, we used the
Monte-Carlo method (Robert & Casella, 2004) and
randomized multiple renditions of the simulation. We

computed the statistical tests for each rendition, and
compared them with the ones reported in the original
paper. We made sure that the statistical tests reported
in the paper did not lie in the lower or upper percentile
of the simulated statistics (nonsignificant).

In order to show that the correlation structure itself is
not related to transfer, we show below that a positive
covariance in gains, and even a replication of the entire
covariance matrix with all assessed tasks are compatible
with a no-transfer assumption. The same covariance
matrix can be produced with no transfer, assuming that
performance on the assessed tasks is determined by a
linear combination of the following factors:

� U0 is the common factor that contributes to the
performance of the demanding WM and intelligence
tasks (see Daneman & Carpenter, 1980).

� U1 and U2 are common factors the contribute to the
performance in tasks assessed within the same
session. Since correlation between tasks may vary
across sessions, we used U1 and U2 for the common
performance within Sessions 1 and 2, respectively.

� UW and UG are test–retest commonality factors for
WM and for fluid intelligence, respectively. These
factors link scores of the same test measured in
different sessions.

The definitions of these factors do not necessarily
indicate correlation (i.e., they are not necessarily positive
values) but they simply allow for this eventuality option.
Let us consider a scenario where the performance vector
X is determined in the following way:

X1;W

X1;G

X2;W

X2;G

X3;G

2
66664

3
77775
¼

g1 a1

g2 a2

0 c1 0
0 0 d1

g3 0
g4 0
g5 0

b1 c2 0
b2 0 d2

0 0 d3

2
6664

3
7775

U0

U1

U2

UW

UG

2
6664

3
7775þ l

ðA1Þ
where g1, g2, g3, g4, g5 are affinity constants determining
the contribution of the shared WM and intelligence
factor, U0, to performance in each of the five measures
composing the Vector X; a1, a2, b1, b2 are the affinity

W1 G1 W2 G2 G3

W1 0.62 0.74 0.62 0.65

G1 0.41 0.65 0.93

W2 0.63 0.56

G2 0.76

SD 0.765 0.930 0.772 0.812 1.216

Table A1. Correlation coefficients and standard deviations in the
training group. W1 and W2 are the WM scores in sessions one
and two, respectively. G1, G2, and G3 are the intelligence scores
in sessions one, two, and the follow-up session.

C1 G1 C2 G2 G3

C1 0.73 0.38 0.64 0.81

G1 0.27 0.79 0.83

C2 0.20 0.29

G2 0.78

SD 0.016 0.646 0.031 0.733 0.827

Table A2. Correlation coefficients and standard deviations in the
active control group. C1 and C2 are the scores in the active
control task in sessions one and two, respectively. G1, G2, and
G3 are the intelligence scores in sessions one, two, and the
follow-up session.
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constants that determine the contribution of the
sessions’ factors to performance; c1, c2, d1, d2, and d3 are
the affinity constants that determine the contribution of
task-specific factors to performance, and l is the
empirical mean of the scores.

We assume that all the factors in Equation 3 are
standardized independent Gaussian random vari-
ables, and choose g1 ¼ 0.76; g2 ¼ 0.52; g3 ¼ 0.66; g4 ¼
0.65; g5 ¼ 0.82; a1 ¼ 0.41; a2 ¼ 0.29; b1 ¼ 0.13; b2 ¼
0.55; c1 ¼ 0.11; c2 ¼ 0.56; d1 ¼ 0.76; d2 ¼ 0.30; d3 ¼
0.74.

The constants were fitted using numerical optimiza-
tion in order to obtain a covariance matrix of the
random variables described by Equation A1 that is
almost identical to the empirical covariance matrix
(Table A1). Note that the obtained factors are all
positive and in the expected range (Engle et al., 1999b).
Since all of the simulation results in this paper were
based on the empirical covariance matrix, we thus show
that all the statistical results reported in Jaeggi et al.
(2011) could be obtained without transfer.
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