
Automatic Web-Scale Information Extraction

Philip Bohannon
Yahoo! Research,
Santa Clara, CA.

plb@yahoo-inc.com

Nilesh Dalvi
Yahoo! Research,
Santa Clara, CA.

ndalvi@yahoo-inc.com

Yuval Filmus
∗

Dept. of Computer Science,
University of Toronto, Canada.
yuval.filmus@utoronto.ca

Nori Jacoby
Yahoo!

Tel Aviv, Israel.
nori@yahoo-inc.com

Sathiya Keerthi
Yahoo! Research,
Santa Clara, CA.

selvarak@yahoo-inc.com

Alok Kirpal
Yahoo! Research,
Santa Clara, CA.

kirpal@yahoo-inc.com

ABSTRACT
In this demonstration, we showcase the technologies that we
are building at Yahoo! for Web-scale Information Extrac-
tion. Given any new Website, containing semi-structured
information about a pre-specified set of schemas, we show
how to populate objects in the corresponding schema by au-
tomatically extracting information from the Website.

Categories and Subject Descriptors
H.0 [Information Systems]: General; H.3.3 [Information
Systems]: Information Search and Retrieval

General Terms
Design, Experimentation, Performance

Keywords
Information Extraction, Web-Scale, Domain-centric

1. INTRODUCTION
One of the grand research challenges in the field of Infor-

mation Extraction (IE) is to develop effective techniques for
web-scale information extraction. In this demo, we showcase
the technologies that we are building at Yahoo! towards this
problem.

Traditional IE techniques considered in the database com-
munity tend to be source-centric, i.e., they can only be de-
ployed to extract from a specific website or data source.
However, a range of web-centric techniques have emerged
recently [2, 4, 8, 9, 10, 16] that seek to look at extraction
holistically on the entire web. All of these efforts have taken

∗Work done while the author was at Yahoo! Research, Tel
Aviv.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD ’12 May 20–24, 2012, Scottsdale, Arizona, USA.
Copyright 2012 ACM 978-1-4503-1247-9/12/05 ...$10.00.

a domain-independent approach. E.g. WebTables [4, 8] ex-
tracts all simple tables and lists from the Web and store
them as relational data. However, domain-independence
makes it difficult to attach semantics to the extracted data.
Furthermore, the amount of information that can be ex-
tracted is quite limited, since most of the information is
outside of simple tables and lists. Web-scale extraction, at
the level of precision and recall high enough to power real
applications, has remained an open challenge.

In contrast, we have advocated [5] a domain-centric ap-
proach to the problem, where we want to extract all the
entities and their attributes from the entire web restricting
to a specific domain. For instance, one might be interested in
constructing a database of all restaurants, along with their
contact information, hours of operation and set of reviews,
by extracting information from all the websites on the web
that contain information about restaurants. Similarly, one
might be interested in constructing databases of all books
and their reviews, artists, albums and their discography, or
product listings from merchants and so on. An example of a
domain-centric extraction system is the DBLife project [7],
which focuses on extracting information about Database re-
searchers. However, DBLife was built on substantial man-
ual effort, ranging from specifying a fixed set of sources to
providing the extraction rules : a process that we seek to
automate at web-scale.

The difference between a web-centric and a domain-centric
approach is that, in the latter, we allow supervision at domain-
level, with the objective of populating a specific schema by
extracting from the entire web. Thus, if we are interested in
constructing a database of restaurants from the web, we can
specify the set of attributes that we are interested in, e.g.
“name”, “address” and “reviews”, supply sample dictionar-
ies or regular expressions or language models for attributes,
specify domain knowledge like “businesses typically have a
single phone number but multiple reviews”, and so on. We
believe that solving the domain-centric extraction can pro-
vide a promising stepping stone towards cracking the grand
challenge of a general web-scale IE.

Nonetheless, even with domain-level supervision, Web-
scale extraction proves to be an incredibly hard problem.
There are several aspects to a complete solution for this end-
to-end challenge, which include discovering and identifying
websites that contain information of interest, analyzing the
websites to identify the correct subset or cluster of pages to

609

Figure 1: Start Page For A New Website

extract from, automatically learning extraction rules, dedu-
plication and linking, all at the scale and diversity of the
web. In our recent works [6, 3], we have been developing
techniques to address some of these research problems. By
building upon these techniques, we will demonstrate the po-
tential of this approach using our system prototype.

2. TECHNOLOGY
In this prototype, we assume a prespecified schema from a

domain of interest. The objective of the system is to be able
to take any new Website containing information from the do-
main, and automatically populate the schema by extracting
from the entire website. Note that the system only requires
human input at the domain level : there is no website-level
supervision. We describe the main components below :

2.1 Clusterer
A website typically contains several “types” of pages. For

example, the website yelp.com has restaurant details pages,
users pages, list pages, events pages, and so on. The cluster-
ing module analyzes the website and organizes the pages of
the site into clusters corresponding to these types. This is
an important step for two reasons. First, it lets us identify
the target set of pages to extract from the site. Second, we
can exploit the structural similarity of pages from the same
cluster to learn a single, high-quality extraction rule for each
cluster.

This component is based on our recent work on efficient
structural clustering of websites [3]. The technique relies
on URLs, in conjunction with very simple content features,
which makes them extremely fast and work easily on web-
sites with millions of pages. Our main observation is that
simple pairwise similarity measures between URLs are not
meaningful. E.g. consider the following urls:

u1 : site.com/CA/SanFrancisco/eats/id1.html

u2 : site.com/WA/Seattle/eats/id2.html

u3 : site.com/WA/Seattle/todo/id3.html

u4 : site.com/WA/Portland/eats/id4.html

Suppose the site has two types of pages : eats pages con-
taining restaurants in each city, and todo pages containing
activities in each city. We will ideally like to cluster the
site into these two clusters. In terms of string similarity, u2

is much closer to u3, an url from a different cluster, than

Figure 2: Start Page For A Preprocessed Website

the url u1 from the same cluster. Thus, we need to look at
the set of urls holistically, and cannot rely on string sim-
ilarities for clustering. Our technique [3] is based on the
principles of information theory, and constructs a set of pat-
terns that offer the simplest explanation for the observed set
of URLs/content.

2.2 Annotators
Once we have a set of clusters, we want to automatically

annotate a small sample of pages with the attributes of in-
terest in order to learn rules for extraction. This is the only
component of the system that is domain-specific : given a
new domain, we only need to write annotators for each of
the attributes that we are interested in.

We use several different kinds of annotators. A dictionary-
based annotator looks for the presence of items from a pre-
compiled dictionary. For instance, we can create a dictionary
of restaurant names based on what we have extracted so far,
and given a new website, we can annotate restaurant names
that overlap with our dictionary. A pattern-based annota-
tor is effective for attributes like phone numbers, dates and
prices. A language-model based annotator can be used for
detecting reviews, product descriptions, etc. In our anno-
tators, we also use HTML cues like the page title, headers
and meta-tags to identify the main content of the page, as
well as identify attributes. For this demo, we have written
manual rules for pattern-based annotators, and have used
a small corpus of reviews to train a language-model based
annotator for reviews.

As we will explain in the next section, we only require weak
guarantees from our annotators. They can have a low recall,
since we only need a small sample of pages with annotations,
and they can be noisy, since we are able to boost their accu-
racy quite effectively by looking at structural redundancies
within websites. We find that with weak guarantees, it is
easy to write annotators for a wide range of attributes across
domains. In our experiments [6], we presented concrete re-
sults on how the weak guarantees of annotators translate
into the overall performance of the extraction system. For
instance, annotators with precision of 0.7 and a recall of 0.15
were sufficient for high quality extractions.

2.3 Extractors
The core component of our system is a learning algo-

rithm [6] that learns high-quality, clean extraction rules from

610

a set of noisy annotations on structurally similar pages. Such
a rule is also called a wrapper in the literature. While the
problem of inducing wrappers from labeled examples has
been extensively studied [13, 12, 11, 15, 14, 1], all the tra-
ditional wrapper induction algorithms assume a clean set of
input annotations, and even one incorrect example breaks
the algorithms completely. The ability of our system to
learn from a noisy set of examples makes it very power-
ful, and allows us to use automatic annotators for scaling
up extraction.

The main idea behind our algorithm [6] is to generate-
and-test : given a set of labels that are noisy, we use an
efficient enumeration algorithm to construct all possible dis-
tinct wrappers generated by subsets of the labels. Each
such wrapper is ranked according to its quality, which de-
pends on its likelihood of generating the (noisy) labels and
its likelihood of being a good wrapper based on its structural
coherency. The intuition is that if the label noise is not too
excessive, then one of the generated wrappers will be trained
on sufficiently many noise-free labels and our careful defini-
tion of quality will cause it to be ranked high.

3. DEMO EXPERIENCE
We will feature a live demo where audience can specify any

website of their choice, and we will show the run of our sys-
tem on the website. We will host the demo for two domains
: products and restaurants. For products, we have written
annotators for name, price, image and reviews, while for
restaurants, we have annotators for name, address, phone,
website and reviews.

A user can specify any website that contains information
about entities from either of the two domains. There are two
ways users can perform this step. First, they can select from
a set of websites for which we have already run our entire
pipeline and cached the results of each stage. We have cho-
sen these websites to illustrate the interesting aspects of our
system, and how it performs in a diverse range of webpages.
Alternately, users can specify any new website. Users can
enter a small set of URLs from the same website on which
they will like to see the extractions. The sample interfaces
for the two ways are shown in Figure 1 and Figure 2.

After a user specifies a website, the system crawls several
pages from the website, and analyses them to form a set of
clusters. The clusters correspond to the different types of
pages present in the website. Figure 3 shows a snapshot of
the site analysis. It shows the number of pages crawled and
used in the analysis, the number of clusters found, URL pat-
terns for clusters, sample pages from each cluster, etc. For
example, two sample clusters it discovers from toysrus.com

are

toysrus.com/products/*

rewardsus.toysrus.com/*

Next, the system uses its annotators to find annotations
in the pages. Based on these annotations, it learns an ex-
traction rule for each attribute in the schema at the cluster
level. Figure 5 shows a sample snapshot of extraction rules
that the system learned for toysrus.com. For instance, it
infers that the XPath

//meta[@property="og:title"]/@content

can be used for extracting the product names for a specific

Figure 3: Clusters

Figure 4: Extracted Records

Figure 5: Extraction Rules

Figure 6: Fixing Extraction Errors

611

cluster in toysrus.com. Figure 4 shows a snapshot of the
set of records that we extracted from a specific toysrus.com
cluster. It shows the name, price and image extracted from
each page. Any given website, in general, will contain a
subset of attributes from our schema, and we show all the
attributes that we were able to find and extract.

Finally, if the system is not able to extract a specific at-
tribute, or extracts it incorrectly, the interface also provides
a single-click functionality to fix the errors. Figure 6 shows
a snapshot of this interface. Thus, the interface can also be
used in a supervised setting, where one can extract from a
website instantly with just a few (often zero) clicks.

4. REFERENCES
[1] Tobias Anton. Xpath-wrapper induction by generating

tree traversal patterns. In LWA, pages 126–133, 2005.

[2] Michele Banko, Michael J. Cafarella, Stephen
Soderland, Matthew Broadhead, and Oren Etzioni.
Open information extraction from the web. In
International Joint Conference on Artificial
Intelligence, pages 2670–2676, 2007.

[3] Lorenzo Blanco, Nilesh N. Dalvi, and Ashwin
Machanavajjhala. Highly efficient algorithms for
structural clustering of large websites. In WWW,
pages 437–446, 2011.

[4] Michael J. Cafarella, Alon Halevy, Daisy Zhe Wang,
Eugene Wu, and Yang Zhang. Webtables: exploring
the power of tables on the web. VLDB, 1(1):538–549,
2008.

[5] Nilesh Dalvi, Ravi Kumar, Bo Pang, Raghu
Ramakrishnan, Andrew Tomkins, Philip Bohannon,
Sathiya Keerthi, and Srujana Merugu. A web of
concepts (keynote). In PODS. Providence, Rhode
Island, USA, June 2009.

[6] Nilesh N. Dalvi, Ravi Kumar, and Mohamed A.
Soliman. Automatic wrappers for large scale web
extraction. PVLDB, 4(4):219–230, 2011.

[7] Pedro DeRose, Warren Shen, Fei Chen, AnHai Doan,
and Raghu Ramakrishnan. Building structured web
community portals: A top-down, compositional, and
incremental approach. In VLDB, pages 399–410, 2007.

[8] Hazem Elmeleegy, Jayant Madhavan, and Alon Y.
Halevy. Harvesting relational tables from lists on the
web. PVLDB, 2(1):1078–1089, 2009.

[9] Oren Etzioni, Michael Cafarella, Doug Downey,
Stanley Kok, Ana-Maria Popescu, Tal Shaked,
Stephen Soderland, Daniel S. Weld, and Alexander
Yates. Web-scale information extraction in Knowitall:
(preliminary results). In WWW, pages 100–110, 2004.

[10] Rahul Gupta and Sunita Sarawagi. Answering table
augmentation queries from unstructured lists on the
web. In VLDB, 2009.

[11] Wei Han, David Buttler, and Calton Pu. Wrapping
web data into XML. SIGMOD Record, 30(3):33–38,
2001.

[12] Chun-Nan Hsu and Ming-Tzung Dung. Generating
finite-state transducers for semi-structured data
extraction from the web. Information Systems,
23(8):521–538, 1998.

[13] Nickolas Kushmerick, Daniel S. Weld, and Robert B.
Doorenbos. Wrapper induction for information
extraction. In IJCAI, pages 729–737, 1997.

[14] Jussi Myllymaki and Jared Jackson. Robust web data
extraction with XML path expressions. Technical
Report RJ 10245, IBM, 2002.

[15] Arnaud Sahuguet and Fabien Azavant. Building
light-weight wrappers for legacy web data-sources
using w4f. In VLDB, pages 738–741, 1999.

[16] Pierre Senellart, Avin Mittal, Daniel Muschick, Rémi
Gilleron, and Marc Tommasi. Automatic wrapper
induction from hidden-web sources with domain
knowledge. In WIDM, pages 9–16, 2008.

612

