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Slow update of internal representations impedes
synchronization in autism
Gal Vishne 1,6✉, Nori Jacoby2,6, Tamar Malinovitch3, Tamir Epstein4, Or Frenkel5 & Merav Ahissar 1,5✉

Autism is a neurodevelopmental disorder characterized by impaired social skills, motor and

perceptual atypicalities. These difficulties were explained within the Bayesian framework as

either reflecting oversensitivity to prediction errors or – just the opposite – slow updating of

such errors. To test these opposing theories, we administer paced finger-tapping, a syn-

chronization task that requires use of recent sensory information for fast error-correction.

We use computational modelling to disentangle the contributions of error-correction from

that of noise in keeping temporal intervals, and in executing motor responses. To assess the

specificity of tapping characteristics to autism, we compare performance to both neurotypical

individuals and individuals with dyslexia. Only the autism group shows poor sensorimotor

synchronization. Trial-by-trial modelling reveals typical noise levels in interval representa-

tions and motor responses. However, rate of error correction is reduced in autism, impeding

synchronization ability. These results provide evidence for slow updating of internal repre-

sentations in autism.
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The core difficulty in social interactions of individuals with
ASD has traditionally been attributed to a lack of social
interest and motivation1, but this view has been recently

challenged2. Recent studies revealed that atypical perceptual and
motor processing are consistent characteristics of autistic
experience3. Individuals with ASD show particular difficulties
when sensorimotor integration is required4,5, and their magni-
tude is correlated with symptom severity6. The manifestation of
various sensory and sensorimotor atypicalities suggests that cross-
modal accounts may be required to explain this complex phe-
notype within a unified framework. Accordingly, several recent
studies have attempted to explain autism within the cross-modal
Bayesian framework. This framework attributes difficulties to an
abnormal estimation of the environment’s statistics, which leads
to impaired integration of past experiences for regulating ongoing
behavior7–11. Yet, the nature of this abnormality has been
disputed.

A dominant account suggests that individuals with autism
overestimate the rate of changes in the statistics of the external
environment10,12, leading to an overestimation of the reliability of
recent events compared with earlier ones. Consequently, recent
events are overly represented in the formation of perceptual
estimations and motor plans (“increased volatility” hypothesis).
An opposing account (“slow updating” hypothesis) proposes that
individuals with autism are able to estimate environmental sta-
tistics correctly, yet the rate at which internal priors are updated
is slower than neurotypical. This account was proposed by Lieder
et al.11, who used computational modeling of two-tone frequency
discrimination to show that participants’ responses are biased by
the tones in previous trials. Yet, the relative weight of recent and
long-term contributions differs between individuals with autism
and neurotypical individuals. Early trials influenced perceptual
judgments similarly in both groups, but the influence of recent
trials was reduced in the autism group. Therefore, while the
statistics of earlier events are integrated well into predictions and
actions, this accumulation takes longer, and recent events are
underweighted. Both theories have clear predictions for broad
contexts, yet in many cases, these predictions are opposed. In
particular, when fast online updates are needed for adequate task
performance, the “increased volatility” hypothesis predicts better
performance in autism, whereas the “slow updating” account
predicts impaired performance. Synchronization tasks require a
fast update of internal representations and motor responses based
on external cues and therefore provide an experimental platform
for comparison between these opposing predictions.

Synchronization ability was reported to be impaired in autism,
in both social and nonsocial contexts13–15. Studies with neuro-
typical populations found that synchronization is functionally
related to the theory of mind16,17 and to social behavior18. The
rationale proposed for these observations is that synchronized
actions promote a predictive mechanism trained to anticipate
other’s actions and intentions19,20.

Paced finger tapping is a synchronization task in which par-
ticipants are asked to align their tap to the beat of an external
metronome. Perfect synchrony means perfect alignment between
the participant’s taps and the external metronome. Human per-
formance is limited in two aspects. First, participants tap with a
small negative asynchrony, which is perceived as synchronous
(Fig. 1a). The (mean) magnitude of this asynchrony is influenced
by many factors, peripheral and central, including the type of
movement, type of feedback, and characteristics of the metro-
nome sound21–25. Since the relative contribution of the peripheral
and central sources is not known, we had no prediction for group
differences regarding mean asynchrony. The second limitation on
synchrony is variability around this mean. Though tapping
variability is also affected by both central (such as

intelligence26,27) and peripheral factors, the contribution of per-
ipheral factors, such as motor noise, is considerably smaller28.
Importantly, the components underlying variability were sys-
tematically modeled.

When the metronome tempo is constant, models of paced
finger tapping assume that keeping the variability small is chal-
lenged by two sources of noise: noise in motor responses and
noise in the internal representation of the metronome tempo
(timekeeping). Both can be corrected online by using the asyn-
chrony error signal (the perceived interval between the metro-
nome beat and the tap). If errors are not corrected quickly and are
kept through metronome beats, they accumulate, increasing the
variability around the mean asynchrony and leading to poor
synchronization28–32. Changing environments introduces
another difficulty—to identify when and to what extent the
metronome tempo changes and quickly correct for it. This is done
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Fig. 1 Isochronous finger tapping: mean asynchrony is similar in the three
groups, but variability around this mean is substantially larger in Autism
(ASD) compared to neurotypical (CON, control) and dyslexia groups
(DYS). a A schematic illustration of the temporal structure of paced
tapping: metronome stimuli (presented every 500ms, black squares), and
finger-tap responses (blue circles) as a function of time; ek - error
(asynchrony, typically negative) in tap k; rk - inter-tap interval; dk - delay
interval from the previous metronome stimulus (beat k-1) to the following
finger tap (tap k). Note that rk ¼ dk � ek�1 . b, c Basic tapping parameters: b
Mean asynchrony is negative for all three groups (p < 0.001) and similar in
the three populations, though more broadly distributed in the ASD group. c
Standard deviation is larger in the ASD group compared to the two other
groups. Each dot represents the performance of one participant (average of
two blocks); the y-axis represents the score in ms, and x-axis and color
represent group membership (with a small jitter for readability): blue circles
—neurotypical, red triangles—dyslexia, and green squares—ASD. The
median of each group is denoted as a line of the same color; error bars
around this median denote an interquartile range. Kruskal–Wallis H-statistic
and corresponding p values are plotted in the bottom-left corner; p values of
comparisons between groups are plotted next to the line connecting the
groups’ medians. N= 109 subjects (NCON= 47, NDYS= 32, NASD= 30).
Source data are provided as a Source Data file. Though there are a few
outlier results in both mean asynchrony and standard deviation of
participants with ASD, these are not the same individuals—scores on these
two measures were not correlated in the ASD and dyslexia groups
(Spearman correlations: ρASD ¼ �0:2 (p= 0.3), ρDYS ¼ �0:24 (p= 0.18)).
A significant correlation was found only in the neurotypical group
(ρCON ¼ �0:37, p= 0.01, uncorrected). Statistical tests are two-sided
unless stated otherwise.
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by modifying the internal representation of the external tempo,
while concurrently correcting for the stationary noise sources
mentioned above. The “slow updating” hypothesis predicts that
the rate of error correction will be reduced in autism while motor
noise and timekeeping noise will be similar to that of neurotypical
individuals. In contrast, the “increased volatility” hypothesis
predicts increased (over-)correction, leading to either superior
alignment or even overshooting the amount of correction
required.

To test the specificity of tapping atypicalities to autism, we also
recruited a group of participants with dyslexia, matched for age
and cognitive reasoning. Dyslexia, a common neurodevelop-
mental disorder, is characterized by poor reading and spelling33.
Similar to individuals with ASD34, individuals with dyslexia show
high concurrence with ADHD35, and atypical perceptual
characteristics36,37. But individuals with dyslexia are not diag-
nosed for social difficulties.

In this work, we administer two tapping protocols, one using a
fixed metronome tempo (Experiment 1), and the other using a
tempo-switch protocol (Experiment 2). Together, the two
experiments allow us to quantify the dynamics of error correction
in both stationary and changing environments. For both experi-
ments, we use computational modeling to quantify the rate at
which internal representations are updated, and dissociate its
contribution to task performance from that of internal noise
sources. Only the autism group shows impaired synchronization,
owing to reduced use of recent sensory information for error
correction. Noise levels in both interval representation and motor
execution are intact. These results support the “slow updating”
account of autism.

Results
Experiment 1 – isochronous tapping reveals reduced online
error correction in ASD, but not in dyslexia. As a main measure
of performance, we used asynchrony (the difference between
metronome stimulus and participant responses). We measured
the mean and standard deviation (SD) of the asynchrony in a
paced finger-tapping task, with a fixed 2 Hz auditory metronome
beat (illustrated in Fig. 1a; test-retest correlation of the main
tapping parameters is ~0.8; Supplementary Note 1 and Supple-
mentary Fig. 1).

We recruited three age and cognitive matched groups
(Supplementary Table 1)—neurotypical individuals (NCON= 47),
individuals with dyslexia (NDYS= 32), and individuals with ASD
(NASD= 30). As expected, the mean asynchrony manifested by
most participants was negative (105/109 participants: 96.3%).
Mean asynchrony was similar in the three groups (average over
two repetitions, median [interquartile range] (ms): neurotypical:
−32.2 [24.9], dyslexia: −30.8 [24], autism: −30.3 [37.9],
Kruskal–Wallis test H(2)= 0.41, p > 0.8, Fig. 1b).

By contrast, we found significant differences in the variability
(denoted by the SD) of the groups around their mean asynchrony
(average over two repetitions, median [interquartile range] (ms):
neurotypical (CON): 30.6 [8.9], dyslexia (DYS): 30.2 [15.6],
autism (ASD): 41.4 [27.1], Kruskal–Wallis test H(2)= 9.74,
p= 0.008, see Fig. 1c). The significant group difference was due
to the large variability of individuals with ASD (post hoc analysis
of ASD group vs. neurotypical or dyslexia using two-sided
Tukey–Kramer method (throughout the paper): p < 0.022, Cliff’s
delta > 0.38 in both cases), while there was no difference between
the dyslexia group and the neurotypical group (p > 0.95).
Although there were individuals with autism whose SD was in
the range of the neurotypical population, the SD of a third of the
group was more than two standard deviations (of the neuroty-
pical distribution) above the neurotypical mean, compared with
only one individual with dyslexia whose variability was in this
range. This pattern of results was replicated in Experiment 2
(Supplementary Figs. 2 and 3).

Reduced online error correction underlies poor synchronization in
ASD. Phase correction is the process of using the perceived error
(deviation of the current tap from mean asynchrony) to adjust the
timing of the next tap to be closer to the participant’s mean
asynchrony (which is perceived as synchronous with the metro-
nome beat). To test the efficiency of online phase correction we
calculated the correlation between consecutive asynchronies
(errors). Any positive correlation means that errors tend to persist
across beats, and a correlation of one means that errors are fully
retained across consecutive beats. A correlation of zero means
that errors were not carried across trials, and negative correlations
mean overcorrection. All three groups showed a positive corre-
lation (Fig. 2a–c, rCON ¼ 0:60; rDYS ¼ 0:59; rASD ¼ 0:75),
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Fig. 2 Correlation between consecutive asynchronies (errors) is highest in the ASD group revealing reduced online error correction. a–c Scatter plots
showing correlations between consecutive asynchronies: a neurotypical (CON, control), b dyslexia (DYS), and c ASD. Individual asynchronies were plotted
with respect to each participant’s mean asynchrony, yielding a mean of 0ms. Consecutive asynchronies are positively correlated in all groups. This positive
correlation is largest in the ASD group, reflecting reduced online error correction. Luminance scale is equal in (a–c): white, the maximum number of
asynchronies in a bin, is 165 in all graphs. d Single participant correlations also show the impairment in error correction for the ASD group compared with
the neurotypical and dyslexia groups. The median of each group is denoted as a line of the same color; error bars around this median denote an
interquartile range. Kruskal–Wallis H-statistic and the corresponding p value are plotted in the bottom-left corner; p values of comparisons between groups
are plotted next to the line connecting the groups’ medians. N= 109 subjects (NCON= 47, NDYS= 32, NASD= 30). Source data are provided as a Source
Data file.
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indicating that participants partially carry errors across con-
secutive beats. Calculating single participant correlations (Fig. 2d,
median [interquartile range]: neurotypical: 0.52 [0.23], dyslexia:
0.51 [0.27], autism: 0.69 [0.28], Kruskal–Wallis test H(2)= 8.86,
p= 0.012), we found the largest correlation in the autism group,
indicating that they retain uncorrected errors longer than the
other two groups. The difference between the groups was sig-
nificant, and post hoc comparisons showed that this is the result
of a significant difference between the ASD group and both the
neurotypical (p= 0.033, Cliff’s delta= 0.35) and the dyslexia
groups (p= 0.017, Cliff’s delta= 0.39). The source of reduced
error correction between consecutive trials in ASD could be slow
perceptual updating, leading to a smaller perceived error, or slow
updating of motor plans. Our analysis cannot dissociate between
these alternatives.

To understand the dynamics of phase correction we used an
autoregressive model to predict the current asynchrony. We
consider linear dependencies not only with the previous
asynchrony but with several previous asynchronies. We used
stepwise regression to determine the number of previous
asynchronies to use in the model. We ran the models both at
the group level (using separate regressors for each participant but
using a group level criterion when adding predictors) and at the
single-participant level. The final model included three predictors
for all three groups and one to three predictors for 103/109
participants (Supplementary Fig. 4a). That is, it was sufficient to
use asynchronies up to three taps back to predict the current
asynchrony, and no additional information was given by adding
more asynchronies as predictors. There was no difference

between the groups with regard to the number of predictors in
the final model (χ2(2, N= 109)= 8.22, p > 0.4). Together, this
suggests that phase correction relies only on the most recent
information (<2 s). In accordance with the results of Fig. 2, we
found a significant difference between the groups in the
contribution of the most recent asynchrony to the current
asynchrony (Kruskal–Wallis test H(2)= 6.16, p= 0.046; Supple-
mentary Fig. 4b), indicating that the ASD groups corrected less of
the most recent error and carried a larger fraction to the next tap
(for more details see Supplementary Note 2 and Supplementary
Fig. 4).

Modeling isochronous tapping reveals that rate of error (phase)
correction is slow in ASD. Impaired phase correction does not rule
out that individuals with autism also have noisier representations
of the metronome tempo (timekeeper noise), or “sloppier” pro-
duction of motor commands (motor noise). To address this
possibility, we used a well-established computational model of
sensorimotor synchronization28,31,32. This model assumes that
each tapping interval is the summation of three components:
timekeeping of external tempo29,38, the time required for motor
execution (both incorporating Gaussian noise), and fraction of
perceived error (asynchrony) correction from the previous tap
(relative to the mean asynchrony which participants view as
synchronous with the metronome). Formally, the model can be
written as follows (see Fig. 3a):

rk ¼ �αek�1 þ Tk þMk �Mk�1 ð1Þ
where rk is the inter-tap-interval of the participant, between
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Fig. 3 Trial-by-trial computational modeling of isochronous tapping: Parameters estimated for each participant show that individuals with autism have
reduced error correction and intact timekeeper and motor noise. a Schematic illustration of the computational model used to dissociate error correction
mechanisms from poor timekeeping or motor noise29,31,32. Each tapping interval (blue empty arrow) is assumed to be the summation of three
mechanisms: (1) error correction based on the previous asynchrony (marked in red, the magnitude of the correction is determined by the phase correction
parameter α) (2) timekeeping of the base tempo Tk (composed of a fixed t0, purple, plus the noise at tap k, nk , green), and (3) motor noise (turquoise). See
also notations in Fig. 1a. Fitting was performed using the bGLS (bounded General Least Squares) estimation method28. b Error correction of phase
difference—the fraction corrected (α) is significantly smaller in the ASD group. c Noise in keeping the metronome period, and d Motor noise do not differ
between the groups. b–d Each block was modeled separately, and parameters were averaged over the two assessment blocks. The median of each group is
denoted as a line of the same color; error bars around this median denote an interquartile range. Kruskal–Wallis H-statistic and corresponding p value are in
the bottom-left corner; p values of comparisons between groups are next to the line connecting the groups’ medians. CON control (neurotypical), DYS
dyslexia, ASD autism. N= 108 subjects (NCON= 47, NDYS= 32, NASD= 29), one ASD participant was excluded due to a large number of missing taps (see
Methods). Source data are provided as a Source Data file.
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metronome beats k and k-1, Tk is the participant’s current
representation of the metronome tempo, Mk is the time of the
motor response at time k (both including noise, which is referred
to as timekeeper noise and motor noise, respectively), ek�1 is the
asynchrony at beat k-1 and α denotes the proportion of correction
of this asynchrony in tap k. To maintain a constant asynchrony,
positive asynchrony deviations should be followed by shorter
intervals and vice versa. Therefore, correction of the next interval
is performed by subtracting the magnitude of the current devia-
tion from the estimated tempo, which is why α, the phase cor-
rection parameter, appears with a negative sign. When α ¼ 0
there is no correction and the previous asynchrony is carried to
the next response, therefore, larger phase correction will corre-
spond to improved performance on the task.

Note that we can separate the timekeeper component Tk into a
fixed mean (t0), which is assumed to be equal to the external
metronome tempo, and a noise component with variance σ2T and
zero mean (denoted by nk), such that: Tk ¼ t0 þ nk (see Fig. 3a).
Previous work suggested that the motor noise, associated with
each movement onset, and the timekeeper noise, associated with
inter-beat intervals, can be distinguished from one another based
on the covariance structure of the noise term29,31,32 (see
Methods). Parameter recovery analysis showed a high correlation
between the fitted values and the parameters used to generate
simulated data (Spearman correlations were larger than 0.92 for
all parameters in each of the three groups), indicating that the
fitting procedure was highly reliable (Supplementary Note 3 and
Supplementary Fig. 6).

We fitted the model for each participant separately and
compared the group parameters (Fig. 3b–d). Phase correction was
(median [interquartile range]) 0.37 [0.21] in both the neuroty-
pical and dyslexia groups, indicating that error was only partially
corrected across consecutive taps, in line with the positive
correlation we found (Fig. 2). Yet, phase correction was even
smaller (0.27 [0.17]) in the autism group, with a significant group
difference (Fig. 3b; Kruskal–Wallis test H(2)= 6.63, p= 0.036).
Post hoc analysis showed a significant difference between the
neurotypical and autism groups (p= 0.045, Cliff’s delta= 0.31)
and a marginal difference between dyslexia and autism groups
(p= 0.078, Cliff’s delta= 0.32), but no difference between the
neurotypical and dyslexia groups (p > 0.95). In contrast to phase
correction, we found no group difference in the levels of
timekeeping and motor noise (Fig. 3c, d; timekeeper noise
(median [interquartile range] (ms)): neurotypical: 20.9 [6.8],
dyslexia: 19.8 [7.7], autism: 21.1 [10.8]; Kruskal–Wallis test
H(2)= 1.18, p= 0.56; motor noise (median [interquartile range]
(ms)): neurotypical: 8.1 [8.2], dyslexia: 9.3 [8.6], autism: 10 [5.6];
Kruskal–Wallis test H(2)= 1.3, p= 0.52). The specificity of the
group difference to phase correction shows that the larger
variability in the autism group does not stem from an elevated
noise level in either motor or tempo keeping processes.
Importantly, simulations based on the model fitted values per
participants reproduced the pattern of differences observed for
consecutive correlation values (Supplementary Note 4 and
Supplementary Fig. 7).

Experiment 2—tempo switches reveal reduced online updating
of external changes in ASD. In the second finger-tapping
experiment we asked whether individuals with autism or indivi-
duals with dyslexia have difficulties in adapting to changing
environments. We tested this by switching the tempo of the
auditory metronome, so that within each block the tempo alter-
nated between two options (randomly every 8–12 intervals). We
quantified the dynamics of updating to the new tempos in our
three groups using both model-free and model-based analyses.

Individuals with ASD fail to adapt to fast changes in the envir-
onment. Figure 4 shows the timing of tapping in each population
aligned to the onset of tempo change (left–acceleration,
right–deceleration). We present performance using the delay
interval dk (the time interval from the previous metronome sti-
mulus to the following finger tap, illustrated in Fig. 1a), rather
than inter-response interval (rk), since the delay interval uses a
constant reference point (the previous metronome beat), whereas
the inter-response-interval depends on the previous asynchrony
which varies from tap to tap. For presentation purposes, we
aligned the pre-change delay interval with the metronome beat
(canceling the difference that originated from negative mean
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Fig. 4 Individuals with autism adapt to changes in tempo only partially,
even when changes are very salient. a, b 90ms step-size, c, d 70ms step-
size, and e, f 50ms step-size. In each panel, the x-axis represents the
metronome-beat number around the moment of tempo change (beat 0),
and the y-axis measures the delay interval in each beat aligned to the pre-
change metronome (mean group values, ±SEM; values were calculated by
first averaging responses within each participant and then across the group;
error bars denote SEM across participants). The dashed lines represent the
metronome beat. Changes are quickly corrected, particularly for the larger
steps (panels a–d). Reduced updates are seen for the smaller 50ms step
changes (panels e, f), where neurotypicals (CON control) take three–four
steps to correct, and individuals with dyslexia (DYS) take longer, perhaps
since these steps are less salient. The difficulties of individuals with autism
(ASD) are seen in all step changes (including the smallest step-size, panels
e, f), and their error is not fully corrected even within seven taps. Each
participant tapped through eight-ten accelerations and eight-ten
decelerations in each condition. Sample sizes: a, b 90ms step-size:
NCON= 46, NDYS= 31, NASD= 29 for acceleration and NASD= 26 for
deceleration. c, d 70ms step-size: NCON= 47, NDYS= 31, NASD= 29 for
acceleration and NASD= 27 for deceleration. e, f 50ms step-size:
NCON= 47, NDYS= 32, NASD= 29 for acceleration and NASD= 25 for
deceleration. See Methods for the exclusion criteria. Source data are
provided as a Source Data file.
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asynchrony, which varies across individuals). The delay interval
in the first beat after the tempo change (beat 0) resembles that of
the pre-change delay, since the tempo change at this point was
not predicted. Following this initial surprise, participants updated
their delay intervals to align with the new metronome tempo.
This update was faster in the larger and more salient tempo
changes39,40: in the 90 ms step-size (Fig. 4a, b), which is very
salient, the neurotypical and dyslexia groups managed to syn-
chronize to the new tempo after 1–2 metronome beats. This was
not the case for the ASD group, which under-corrected in the first
and second taps following the change and did not fully adapt even
after seven taps. Though this effect is clearest for the 90 ms step-
size, similar dynamics can be seen also in the 70 ms step-size
(Fig. 4c, d). The smaller, 50 ms step-change (Fig. 4e, f), was less
salient and took marginally longer to adapt also for the dyslexia
group compared with the neurotypical group, though the differ-
ence was not significant in any of our analyses (see following
sections). The sluggish update in dyslexia is manifested only in
the small tempo change, suggesting that large and abrupt changes
are not more challenging to individuals with dyslexia, who do not
show an updating difficulty, but possibly reduced perceptual
sensitivity to small interval changes. The interpretation of
reduced sensitivity to temporal durations, perhaps due to reduced
benefits from repeated intervals, is in line with previous
observations41.

Individuals with ASD do not fully update to tempo changes even
following several seconds. To assess whether updating was attained
several beats after the tempo change, we calculated the distribu-
tions of the delay intervals in each of the metronome tempos,
excluding the four beats immediately after the tempo change,
where most tempo update takes place, as shown in Fig. 4 (taking
out two–six beats after the change produced similar results). If
participants eventually adapt to the change in tempo, the two
distributions should be highly separable. This was quantified
using measurements from signal detection theory: sensitivity
index (d′) and area under the curve (AUC) of the receiver
operating characteristic (ROC). In the 90 and 70 ms step-sizes
(Fig. 5a–h) we received comparable measurements for the neu-
rotypical and dyslexia groups, and reduced values for the autism
group, though in the 50 ms step-size (Fig. 5i–l) the values of the
dyslexia group were between those of the neurotypical and autism
groups. This pattern was replicated when we looked at single
participant values: on both measures (d′ and AUC), there was a
significant difference between the groups in all conditions
(Kruskal–Wallis test; all p < 0.012). Post hoc comparisons showed
a significant difference between the autism and neurotypical
groups in all step-sizes and measures (all p < 0.008), and between
the autism and dyslexia groups in the larger step-sizes. The dif-
ference between the neurotypical and dyslexia groups was not
significant in any step-size (all p > 0.4).

Importantly, d′ and AUC are both affected by the SD of the
distribution of asynchronies. Since the SD in the ASD group is
larger (Experiment 1), normalizing by SD would decrease d′ in
this group more than in the other groups. In order to see if there
is an impairment in the autism group on top of the increased
variability, we used the difference between the means of the
distributions without SD normalization. We found comparable
values for the neurotypical and dyslexia groups, and smaller
values in the ASD group, for the 90 and 70 ms step-size
conditions (Fig. 5a–h). Looking at single participants this pattern
was preserved (Kruskal–Wallis test 90 ms: p= 0.007; 70 ms:
p= 0.014), with post hoc comparisons showing significant
differences between the neurotypical and autism groups, and
between dyslexia and autism groups (all p < 0.05), with no

difference between neurotypical and dyslexia (p > 0.6). For the
50 ms step-size (Fig. 5i–l) we found that the dyslexia group value
is midway between that of the neurotypical and the ASD groups,
as in other measures of small tempo changes (single participant
Kruskal–Wallis test: p > 0.2). Combined measures (formed by z-
scoring each step-size condition using the mean and SD of the
neurotypical group, then averaging over the different conditions)
showed a significant difference between the groups in all
measures (Kruskal–Wallis test, p < 0.002 for d′ and AUC and
p= 0.013 for the difference of means), and post hoc comparisons
showed no differences between the neurotypical and dyslexia
groups (all p > 0.4), but significant differences between the
neurotypical and ASD groups (p < 0.001, Cliff’s delta > 0.45 for
d′ and AUC and p= 0.017, Cliff’s delta= 0.37 for the difference
of means) and between dyslexia and ASD groups (p= 0.04 for
AUC and difference of means, p= 0.08 for d′, all Cliff’s delta >
0.35).

Modeling the parameters underlying tempo switches reveals slow
period-updating in ASD. In Experiment 1 the mean timekeeper
period was assumed to be a fixed value (t0)—the metronome
period. To model changing environments, we now enabled
changes in the mean estimate of timekeeper, so that instead of
decomposing Tk into a fixed mean and a noise component as we
did in the isochronous case, we use the following equation:

Tk ¼ tk þ nk ð2Þ
where tk is dynamically adapting to the changes in tempo. The
estimate of the tempo should be informed by the asynchrony,
where large positive errors indicate an acceleration in tempo (the
period getting shorter), so the internal estimate must be reduced,
and large negative errors indicate a deceleration. We used a
model proposed by Schulze et al.42, where this intuition regarding
tempo correction is implemented using the following equation
(Fig. 6a):

tk ¼ tk�1 � βek�1 ð3Þ
Where β is a parameter denoting the proportion of correction

of the period estimate for interval k. Optimally, the period
estimate should track the changes in the external tempo, but it
would not be an ideal strategy to change this internal estimate too
rapidly, since asynchrony errors can result from noise in the
participant’s taps. The magnitude of β determines the pace of this
updating procedure. The full model is defined by the equation of
the model of Experiment 1 (Eq. (1), Fig. 3a), substituting Eq. (2)
coupled with the equation for the dynamics of the period
correction (Eq. (3), Fig. 6a):

rk ¼ �αek�1 þ tk þ nk þMk �Mk�1 ð4Þ

tk ¼ tk�1 � βek�1

To disentangle the estimates of the phase correction (α) and
period correction (β) we use the bGLS method28 (see Methods).
To enhance the model’s sensitivity to the changes, we used only
the segments immediately before and after the tempo change. We
fit the model to each tempo-change segment separately and
averaged the resulting parameter values for each step-size (first
per block, and then across blocks). The extended model explained
the data of Experiment 2 substantially better than a model
without period correction, namely the model of Experiment 1
(likelihood ratio test, p < 0.001 for all subjects and Akaike
information criterion (AIC) for the extended model is smaller
than the original model for all subjects). Adequate parameter
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recovery is shown in Supplementary Fig. 6 and Supplementary
Note 3.

In each of the step-size conditions, we found a significant
group difference in period correction (Kruskal–Wallis test, all
H(2) > 8, p < 0.018), with no significant differences in the other
parameter estimates (Kruskal–Wallis test, all H(2) < 3.3, p > 0.2).
Since the optimal values for error correction depend on context,
we obtained combined estimates by z-scoring each parameter for
each step-size condition (using the mean and SD of the
neurotypical group) and averaging over the different conditions
(Fig. 6b–e). As expected from the single condition results, the
ASD group had a significantly smaller period correction (z-scored
β, median [interquartile range]: neurotypical: 0.13 [0.95],
dyslexia: −0.29 [1.46], autism: −1.03 [1.32]; Kruskal–Wallis test
H(2)= 15.59, p= 0.0004, Fig. 6b). Post hoc comparisons showed
a significant difference between the autism and neurotypical
groups (p= 0.0002, Cliff’s delta= 0.54), and between the autism
and dyslexia groups (p= 0.048, Cliff’s delta= 0.35), with no
difference between the neurotypical and dyslexia groups
(p= 0.34). No differences were found in other estimated
parameters (all p > 0.16, see Fig. 6c–e), including z-scored phase
correction (α). Simulations based on the fitted values of each
participant were able to reproduce the observed patterns of
reaction to changes that were characteristic of each group
(compare Fig. 4 to Supplementary Fig. 8, Supplementary Note 4).

To conclude, individuals with autism show reduced initial
updating of tempo, which is not fully corrected within the next
3–4 s (>7 taps), as can be seen in Figs. 4, 5.

Having found group differences in phase correction in a
stationary environment (α, Experiment 1) and in period

correction in the changing-tempo protocol (β, Experiment 2)
we asked whether these two parameters denote separate
mechanisms, or, alternatively, both reflect the same mechanism
of online error correction. In a tempo-change paradigm, the
relative contributions of the processes of correction for phase
error and for period error are difficult to dissociate, since these
errors are temporally correlated39,43. The large errors immedi-
ately following the tempo change are always the summation of the
error directly induced by the metronome’s tempo change (which
requires a genuine period correction), and the error induced by
the participant’s inability to predict the point of tempo change
(inducing an additional step-change phase error at beat zero). To
resolve this ambiguity, we assessed the cross-participant correla-
tion between the parameter of phase correction in Experiment 1
(Fig. 3b), and period correction in Experiment 2 (Fig. 6c). We
found significant positive correlations in each of the three groups
separately (Spearman correlations: ρCON= 0.44 (p < 0.002),
ρDYS= 0.5 (p < 0.005) and ρASD= 0.61 (p < 0.001), Fig. 7a–c)
and when combining the groups (ρALL= 0.55 (p < 0:001)). By
contrast, there were no significant correlations between the other
error correction parameters in any of the three groups (all
|ρ| < 0.18, p > 0.35, for the correlations between the two error
terms of Experiment 2, and the two estimations of phase
correction). This combined pattern of correlations suggests that
phase correction in Experiment 1 and period correction in
Experiment 2 are manifestations of a common mechanism of
online error correction. We, therefore, formed a combined update
rate score by averaging the correction parameters of both
experiments (again after z-scoring with respect to the neuroty-
pical group). Update rate showed a significant difference between
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the groups (median [interquartile range]: neurotypical: −0.07
[1.21], dyslexia: 0.03 [1.57], autism: −1 [1.63]; Kruskal–Wallis
test H(2)= 11.95, p < 0.003, Fig. 7d). Post hoc comparisons
revealed a significant difference between the neurotypical and
ASD groups (p < 0.002, Cliff’s delta= 0.45), and between dyslexia
and ASD groups (p= 0.045, Cliff’s delta= 0.35), with no
difference between the neurotypical and dyslexia groups
(p > 0.65, Cliff’s delta= 0.12). Overall, the autism group had a

substantially lower updating rate yielding slower correction rates
in both fixed and changing environments.

Update rate is correlated with communication and mindreading
skills. Since previous literature suggests that synchronization is
associated with social skills17,18, we asked whether slower
updating is correlated with these skills among our participants in
the neurotypical and autism groups. We administered to
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participants in both groups the AQ50 (Autism Quotient)—a self-
report questionnaire, aimed to assess the severity of autism-
related traits44. Nineteen of our participants with autism and 37
neurotypical participants filled the questionnaire. The ques-
tionnaire is composed of several subscales which together assess
several traits associated with autism, including social and com-
munication skills. Higher scores on the questionnaire indicate
more autistic traits. Accordingly, we found significantly higher
scores in the autism group (median [interquartile range]: 75
[23.5]) compared with the neurotypical group (median [inter-
quartile range]: 52 [17.5]), Wilcoxon rank-sum test, p < 0.001,
Cliff’s delta= 0.69.

We hypothesized that a slower update rate (the combined z-
score of α in Experiment 1 and β in Experiment 2, Fig. 7d) would
correspond to poorer social and/or communication skills. We
used the three-factor model of the AQ50 proposed by Austin45,
which separates between individuals’ cognitive social abilities
(theory of mind—their ability to understand other people’s
thoughts, communication/mindreading factor), and their emo-
tional propensities (joy from being with others and socializing,
social skills factor). The combined update rate was not correlated
with the social skills factor in either group (ρ< 0:12 for
neurotypicals and p > 0.5 for individuals with ASD). However,
it was significantly correlated with the communication factor in
both the neurotypical (Fig. 8b, Spearman correlation
ρCON ¼ �0:36; p < 0.03) and the ASD groups (Fig. 8c, Spearman
correlation ρASD ¼ �0:44; in a two-tailed test p= 0.058, in a one-
tailed p < 0.029, which is justified based on our a priori
hypothesis). Importantly, despite the large group difference in
the communication factor (Wilcoxon rank-sum test, p < 0.0002,
Cliff’s delta= 0.63, Fig. 8a), the neurotypical and ASD groups
showed a similar pattern of correlation between communication
skills and updating rate (Fig. 8b, c). Bootstrap permutations
showed that the correlation values of the two groups were not
significantly different (p= 0.78), and both could be approximated
using the correlation in the combined group (see Methods,
section AQ50 questionnaire). We therefore also assessed the
correlation across both groups (Fig. 8d), which was highly
significant (Spearman correlation ρALL ¼ �0:44, two-tailed test
p < 0.0015 (Bonferroni corrected for two factors)).

Discussion
We found that individuals with autism fail to synchronize their
movements to external cues, unlike individuals with dyslexia, who
are able to synchronize adequately. Using trial-by-trial

computational modeling, we were able to precisely pinpoint the
underlying deficit: we found that the level of noise in both motor
processing and internal timekeeping is sufficient in individuals
with autism, yet they use recent sensory information to a lesser
degree when compared with the other two groups. Consequently,
they are slower to correct their synchronization errors (Experi-
ment 1) and are slower to adapt their internal representation to
changes in the environment (Experiment 2).

To understand the pattern of deficits found in the autism group
we used a well-established model of sensorimotor
synchronization31,32. In this model, each tap is informed by two
distinct sources of prior information: a long-term source, the
timekeeper, holding information about the distribution of inter-
beat-intervals accumulated over the experiment; and a short-term
source, responsible for online error correction, that relies on the
most recent asynchronies. Together, the mean value of the
timekeeper (the metronome tempo) and the error of the most
recent tap provide prior information for performance in the
current trial. The long-term component (the mean value of the
timekeeper) is reliably kept by the participants with autism,
whereas the recent information, which needs to be quickly inte-
grated into the timing of the next tap either due to inherent noise
in motor execution or to a sudden tempo change, is used less in
individuals with autism than in the neurotypical and dyslexia
groups, suggesting a slower integration rate.

This observation suggests an underweighting of recent sensory
information into a form that can be used to guide behavior, in line
with the “slow updating” framework11. Importantly, in this study
participants had a strong incentive to utilize recent sensory infor-
mation, which always improved synchronization, but individuals
with autism nonetheless failed to do so. The “slow updating” fra-
mework proposes that Bayesian integration will be impaired in
autism when fast integration is needed but will otherwise be intact.
This stands in contrast to the predictions of “increased volatility”
accounts, which propose that individuals with autism overestimate
the volatility of the environment10,12, or that individuals with aut-
ism overweigh their prediction errors9. According to these accounts,
individuals with autism evaluate the environment’s statistics as
changing more frequently than it actually does, and therefore they
would be expected to quickly update their internal model to meet
their estimated rate of environmental change. We directly tested
this prediction by using blocks with changing tempos and found
reduced updating in the autism group, rather than accelerated
updating, in line with the “slow updating” framework.

The slow-update conceptualization explains many seeming
inconsistencies in the literature assessing motor performance,
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sensorimotor performance, and even finger tapping in ASD. This
literature characterized motor skills but did not study the rate of
online updating as the limiting bottleneck. For example, when
individuals were asked to keep tapping after the metronome stops
(unpaced tapping), the performance of the ASD group was
comparable to neurotypicals’46,47. This seems surprising, since
these conditions are more cognitively demanding48. However, the
constraint on performance here is keeping the previous tempo,
i.e., the robustness of working memory rather than synchroni-
zation with external stimuli. In such conditions, slow-update
counterintuitively predicts that the performance of individuals
with autism will be similar to that of neurotypical controls, since
serial online error correction is not a limiting bottleneck. This is
indeed the observation46,47 and is also consistent with our finding
of similar timekeeper noise in the three populations (Figs. 3c, 6d).
Similarly, in demanding tasks that require more complicated
learning mechanisms, and hence do not rely on online error
correction, individuals with ASD are expected to show typical
performance, which is indeed the case49. However, when test
conditions require online synchronization, their performance
manifests elevated variability15. Interestingly, in line with our
findings of reduced serial error correction in the ASD group,
error-related negativity (ERN) event potential has a lower
amplitude and longer latency in ASD50,51. This ERP component
is also associated with the correction of large asynchronies in
finger tapping52.

Our analyses also suggest a mechanistic account to the motor
“clumsiness”, reported already in early descriptions of autism53,
and commonly observed since54,55. We find that motor function
is not inherently noisy in autism, but rather, that the process of
integrating sensory information into motor plans is slower.
Hence, while there is an essential sensory component to many
movement forms, we expect individuals with autism to experience
the greatest difficulty when fast integration is required. This
prediction is supported by recent reviews analyzing the core
difficulties underlying poor sensorimotor integration in autism4,5.
Whyatt & Craig4 show that the motor deficit in autism is specific
to tasks requiring fast sensorimotor integration, for example,
individuals with autism show a deficit in catching a ball, which
requires rapid integration of visual information, while they show
intact throwing, which is internally driven. Both reviews suggest
that impaired sensorimotor integration may underlie all deficits
found in autism spectrum disorder. We propose that impaired
sensorimotor integration stems from reduced use of sensory
evidence to correct for errors, which is a specific manifestation of
slow updating of internal models11.

The specific stage of processing which yields the slow update is
difficult to pinpoint. The slower processing stage could transpire
at the perceptual level, in which case the motor manifestations are
inherited. Namely, the tapping task relies on fast and accurate
error calculation, which require fast comparisons between the
timing of the external metronome and the proprioception of the
finger tap. If cross-modal integration is sloppier in autism, or
temporal windows are less precise3,56,57, then perhaps occasion-
ally no error is calculated, leading to a bias of underestimating the
error, and consequently to reduced synchronization. In our
model, it would lead to smaller alphas and betas. A recent study
using Bayesian modeling to understand the deficits of individuals
with autism in a visual path integration task can also be under-
stood within this framework. Noel et al.58 found significantly
larger variability in motor execution in the autism group, and
their modeling framework revealed that individuals with autism
are impaired in scaling their sensory likelihood function when
executing the next action. Inadequate scaling can be a sign of
poor updating of priors but can also stem from impairments at
the sensory level.

We should note however that in both Noel et al.’s path inte-
gration and our paced finger tapping task, the impaired use of
sensory information was measured in conditions of serial actions,
where adequate performance requires fast integration of sensory
information to inform the next behavior. In conditions where
trials are embedded in a setting that does not rely on fast cross-
trial or cross response updates, the responses of individuals with
autism are typically fast and temporally accurate59,60. For
example, assessing temporal estimation, Edey et al.61 presented
participants with four auditory (or visual) stimuli with equal
temporal intervals in each trial and asked participants to listen to
the first two stimuli and press a button in temporal alignment
with the third and fourth. The temporal accuracy of participants
with autism was similar to that of neurotypical participants and
even better than neurotypicals’ in the visual task. Adequate per-
ception of tempo is in line with our findings of adequate time-
keeper noise. But importantly, their study did not assess serial
dependence effects across trials. When serial effects were mea-
sured in a task of temporal reproduction, and the impact of
previous trials’ intervals was assessed, it was found that children
with autism underuse previous intervals62, in line with the “slow
updating” framework. A difference in serial dependency profiles
between the groups may also underlie the higher accuracy of the
autism group in the visual condition observed by Edey et al. It
has been shown in several contexts that visual sensorimotor
synchronization is noisier than auditory sensorimotor
synchronization23,48,63, which may lead participants, particularly
neurotypicals to increase the magnitude of serial dependency64,
and perhaps consequently hamper their performance11.

Our observation of synchronization difficulties in a nonsocial
context indicates that poor synchronization is not a unique out-
come of a lack of social interest2. Rather, reduced synchronization
may reduce the interest in other people’s state of mind, though
causality is likely to operate in both directions. We found a
correlation between our measure of update rate and mindreading
skills, in both neurotypicals and people with ASD, yet we did not
find a significant correlation with social joy. There is also other
evidence for distinct processes underlying the neurocognitive vs.
affective influences on social skills65. Therefore, it is possible that
the update rate taps onto one mechanism, but not all. Further
studies, which include direct clinical measures, are needed to
clarify the functional relations.

In contrast to the autism group, the dyslexia group had no
difficulties in sensorimotor synchronization. This observation is
at odds with the temporal sampling framework of dyslexia66,
which posits that individuals with dyslexia have problems with
oscillatory entrainment, specifically in the delta range (1.5–4 Hz).
The temporal sampling theory predicts impairment in rhythmic
motor performance at the tested range of 2 Hz. However, early
studies of individuals with dyslexia found no deficit in simple-
paced tapping tasks67,68. Follow-up studies69,70 obtained mixed
results in paced finger tapping, and difficulties depended on the
exact tempo around 2 Hz. Still, we should note that we did find a
subtle deficit in the dyslexia group in adapting to small tempo
changes (50 ms), though not in the isochronous condition. The
specificity of the very mild deficit in dyslexia to small changes in
tempo suggests that it reflects a slightly reduced sensitivity to
tempo, perhaps due to reduced benefits from interval repetition41,
but we cannot rule out alternative accounts. Though the differ-
ence from the neurotypical group was not significant in any of
our analyses, in the small tempo change the dyslexia group’s
performance also did not significantly differ from that of the
ASD group.

To conclude, our study compared two prominent computa-
tional accounts of autism—the “increased volatility” account and
the “slow updating” account. Our results support the “slow
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updating” account, which proposes that slow update of internal
representations is a core deficit of autism, contributing to both
perceptual and motor difficulties. More broadly, our study
demonstrates how computational modeling can be used in order
to better understand the dynamics of information processing in
perception and action in both typical and atypical populations.
This approach can lead to the novel integration of computa-
tionally informed methods for clinical applications.

Methods
Participants. Neurotypical participants and participants with dyslexia were
recruited through advertisements at the Hebrew University of Jerusalem and col-
leges near the university. Participants with ASD were recruited through clinics
(including author T.E.’s clinic), designated facilities, and support groups. Multiple
recruitment sources were used to balance any potential biases that each single
source might suffer from. All participants in the dyslexia group had been diagnosed
by authorized clinicians as having a specific reading disability and all participants
with ASD were diagnosed by authorized clinicians and were consequently entitled
to Israeli government support aimed specifically for individuals with ASD. All
participants were native Hebrew speakers (either born in Israel or immigrated to
Israel before the age of 4 years), with no more than minimal musical education
(less than 3 years of self-reported musical education). We added the latter
restriction (as in ref. 11) since performance on sensorimotor tasks may be enhanced
by musical background71–73, and may affect clinical groups to a different extent74.
We recruited participants to all groups within a predefined time period, which was
to be extended if one of the groups contained less than 20 participants. By the end
of the recruitment period, all groups were larger than 20 participants. Participants
with autism were recruited from multiple sources to ensure the sample is repre-
sentative. All participants completed a set of cognitive assessments, which eval-
uated general reasoning skills by the standard Block Design task (WAIS-IV75) and
reading abilities by pseudoword and paragraph reading (details can be found in
ref. 11). They all performed the same protocol of finger tapping—Experiments 1
and 2. Participants in all groups were randomly sampled.

Data were collected from 133 participants (56 neurotypical, 39 dyslexia, and 38
autism). Of these, N= 24 (NASD= 8, NDYS= 7, NCON= 9) were excluded. Our
exclusion policy (determined prior to data collection) was aimed to ensure that the
general reasoning skills of all participants are no less than two SD below the general
population mean (scaled Block Design scores > 6), age, and general reasoning
scores are matched across the three groups and reading skills of the neurotypical
and ASD groups are matched. Since the focus of this research was the ASD
population, we excluded participants in a way which kept the largest number of
participants with ASD. Excluding all participants with a Block Design score < 7
excluded one participant with dyslexia, and six with ASD. Matching Block Design
scores, while keeping as many participants with ASD as we could, led us to exclude
neurotypical and dyslexia participants with Block Design > 15: 7 neurotypical, and
four with dyslexia. Reading-related measures (assessed in the lab) led to excluding
one neurotypical participant with exceptionally low pseudoword reading (more
than 2 SDs below group mean) and two participants with dyslexia exceptionally
high pseudoword reading scores (> 2 SDs above group average). Finally, three
participants were excluded due to extreme mean asynchrony values (> 3 SDs above
the population mean, based on previous studies)—one neurotypical and two in the
autism group. The final group consisted of 109 participants (47 neurotypical, 32
dyslexia, and 30 autism). These groups were matched in age and reasoning skills,
measured by the standard Block Design task. Results of these assessments are
reported in Supplementary Table 1. Importantly, this exclusion policy only
weakened the results reported in the paper (namely, the population without the
exclusion show larger effect sizes compared with what we report in the paper) since
neurotypical participants with higher Block Design scores tend to be better tappers
(lower SD, better error correction) and individuals with ASD with lower Block
Design scores tend to be poorer tappers. Piloting began in November 2013. The
collection of data from the neurotypical and dyslexia participants took place
between March 2014 and September 2015, and between May 2017 and March
2018. ASD data collection took place between December 2015 and March 2018.

All experiments were approved by the Ethics Committee of the Psychology
Department of the Hebrew University and the Helsinki Ethics Committee of Sheba
Hospital (required for testing individuals with ASD recruited through their adult
clinic). All participants provided written informed consent and were financially
compensated for their time and travel expenses.

Finger tapping experimental design. Participants heard a series of metronome
beats and were asked to start tapping in synchrony with the metronome. To help
participants synchronize, they were instructed to listen to the metronome first and
tap after about three metronome beats23. The metronome beats were heard
through headphones at a comfortable presentation level. Tapping was performed
on a custom-made wooden box, including a microphone which recorded the
participant’s responses. We used either Focusrite Saffire 6 USB or Focusrite Scarlett
2i2 sound cards, which simultaneously recorded the output from the microphone
installed inside the box and a split of the headphone signal using the open-source

software audacity (https://www.audacityteam.org/), so that the playback latency
and jitter could be estimated for each recording. Onsets were extracted from the
stereo audio signal using a custom Matlab script. The overall latency and jitter
obtained in this way, measured separately using calibration hardware, was about
2 ms76.

The task consisted of 12 blocks, each containing ~100 metronome beats.
Rhythmic patterns consisted of identical short percussive sounds (“clicks”) lasting
55 ms with an attack time of 5 ms generated from amplitude modulated white
noise. Blocks were separated by short pauses of 5 s. Participants had two breaks,
after the third and eighth blocks. Prior to the test procedure, all participants
completed one block of practice. Researchers were present during the demo block,
but usually left the room for the experimental session, except in rare cases when the
testing conditions did not enable this. The researchers were not blind to the
hypothesis or condition during collection.

Blocks were separated into six conditions and each was repeated twice. The first
condition (Experiment 1) had an isochronous tempo of 2 Hz—beats were
presented with an inter-onset-interval (IOI) of 500 ms, known to be close to the
optimal tempo for synchronization23,77. The other five conditions (Experiment 2)
were composed of alternating tempos. In each block, the metronome tempo
alternated between two options, which differed symmetrically from the baseline
tempo of the isochronous condition (500 ms): one tempo was faster than this
baseline and the other was slower. Metronome changes occurred randomly every 8
to 12 intervals, thus both changes were repeated several times in each block (the
design was similar to ref. 43). We used five different conditions with deviations
ranging from ±5 to ±45 ms, in steps of 10 ms: (1) 495 and 505 ms (±5 ms, step-size
of 10 ms), (2) 485 and 515 ms (±15 ms, step-size of 30 ms), (3) 475 and 525 ms
(±25 ms, step-size of 50 ms), (4) 465 and 535 ms (±35 ms, step-size of 70 ms), and
(5) 455 and 555 ms (±55 ms, step-size of 90 ms). Each block contained two types of
changes: acceleration (slow to fast tempo change) and deceleration (fast to slow
tempo change). For example, in condition (3) the acceleration was a change from
525 to 475 ms and deceleration was the change from 475 to 525 ms. The 12 task
blocks (including Experiment 1 and Experiment 2) were presented in one of four
pseudorandomized orders.

As explained above, the tempo changes in Experiment 2 covered a broad range
and were chosen based on previous literature, which tested musicians or trained
participants43,78. Our novice, musically untrained participants had markedly higher
tracking thresholds—the two smaller step changes were largely unnoticed by our
participants (Supplementary Fig. 5). We, therefore, focused our analyses on the
three larger step-sizes shown in Figs. 4–7. Importantly, the computational
modeling results remain highly significant also when including the smaller tempo
changes (Fig. 6: β Kruskal–Wallis test H(2)= 14.13, p= 0.0009. Post hoc
comparisons show a significant difference of autism and neurotypical groups
(p= 0.0005), and a marginal difference between the autism and dyslexia groups
(p= 0.068); Fig. 7: Spearman correlations between phase correction and period
correction ρCON ¼ 0:54 (p= 0.00012), ρDYS ¼ 0:5 (p= 0.0043) and ρASD ¼ 0:66
(p= 0.00015), and significant group difference in update rate: H(2)= 11.05,
p= 0.004; Fig. 8: Spearman correlations between update rate and communication
and mindreading skills: ρCON ¼ �0:31; ρASD ¼ �0:41; ρALL ¼ �0:38, all p < 0.05,
one-sided). We show the mean and SD of the asynchrony in all experiment blocks
(including the two smaller step-sizes) in Supplementary Figs. 2 and 3.

Finger tapping analyses. All analyses and statistical procedures were performed
using Matlab (version 2019b). To measure synchronization, we used the time
interval between the metronome stimulus and participant’s responses (asynchrony,
we denoted it by ek , see Fig. 1a). Participants usually anticipate the metronome beat
resulting in a negative mean asynchrony21,23. We denote by rk and sk the inter-tap-
interval and inter-stimulus-interval between taps k-1 and k, respectively. We
denote by dk . the delay interval between metronome beat k-1 and the next parti-
cipant tap (corresponding to beat k). Note that rk ¼ dk � ek�1 (see Fig. 1a).

A model-free characterization of tapping performance in a given block is given
by the mean asynchrony and the SD of asynchronies in that block. In Experiment 2
perturbations of the metronome, tempo occurred at unexpected time points,
therefore we computed the mean and SD after removing the contribution of the
unexpected perturbation (sk � sk�1). Namely, we compute the mean and SD of
e0k ¼ ek þ ðsk � sk�1Þ. Results (Fig. 1b, c and Supplementary Figs. 2, 3) were
averaged over the two repetitions of each condition.

We excluded response taps that were outside a window of ±200 ms surrounding
metronome beats23. Omitted taps are cases where the participant did not tap within
a 400 ms window around the metronome beat. Overall, there was a small number
of omitted or excluded taps—less than 5% of the taps (across experiments). In
Experiment 1 the percentage of omitted or excluded taps was (median
[interquartile range] (%)): neurotypical: 0.5 [1.3], dyslexia: 0.5 [1.5], autism: 1.2
[4.9]. The difference between the groups was marginally significant
(Kruskal–Wallis test, H(2)= 5.8, p= 0.055), corresponding to our finding of more
variable tapping in the autism group. In Experiment 2 the percentages were
(median [interquartile range] (%)): neurotypical: 1.3 [2.5], dyslexia: 1.5 [3], autism:
2.8 [10], which is again marginally significant (Kruskal–Wallis test, H(2)= 5.58,
p= 0.06). Computational modeling was performed only on blocks with less than
40% omitted or excluded taps. This excluded three blocks from Experiment 1, and
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eight blocks from Experiment 2 (one block from 50ms step-size, four blocks from
the 70 ms step-size, and three blocks from the 90 ms step-size).

Experiment 1

Autocorrelation analysis
As a first approach to assess the rate of error correction we computed the (Pearson)
correlations between consecutive asynchronies (ek). For this analysis we used perceived
asynchronies, meaning the interval between the current asynchrony and the mean
asynchrony (ek �meankðekÞ), not the metronome beat. In the population analysis
(Fig. 2a–c), we calculated the correlation in each group using data from all subjects
together. In the single-subject analysis (Fig. 2d), we used data from both blocks.

Autoregressive model (Supplementary Note 2 and
Supplementary Fig. 4)
To study the timescale of serial dependence in tapping tasks, we used an autoregressive
model, where each asynchrony is predicted by several previous asynchronies (with no
intercepts, since we used the perceived asynchronies (ek �meankðekÞ). To determine the
number of previous asynchronies to use in the model, we ran a stepwise regression
analysis both at the group level and for each participant separately. In each step of the
regression, an additional asynchrony (going one tap back from the earliest asynchrony
already incorporated into the model) was added if the F value of the SSE (sum of square
errors) had a p value < 0.1. In the group model, we used separate predictors for each
subject, but the F value was calculated based on adding an additional predictor for all
subjects in the group. The final group-level model included three predictors in all three
groups, and at the single-participant level, it included one to three predictors for 103/109
participants, indicating that phase correction is a rapid process. We, therefore, fit an
autoregressive model with four predictors (for all participants, we tried to predict asyn-
chrony k with asynchronies k-1, k-2, k-3, and k-4). Formally, our model can be written as:

ek ¼ b1ek�1 þ b2ek�2 þ b3ek�3 þ b4ek�4 þ ξk ð5Þ
where ξk is independent Gaussian noise. The model combined data from both experiment
blocks.

Computational model of sensorimotor synchronization
To test whether individuals with autism show noisier representations or “sloppier” motor
production we used a computational model of sensorimotor synchronization29,31,32. The
model assumes that the interval between two consecutive taps is influenced by three
components: timekeeping of the metronome tempo, motor execution, and phase cor-
rection. Formally, the model can be written as follows (see Fig. 3a):

rk ¼ �αek�1 þ Tk þMk �Mk�1 ð6Þ
Where rk is the time interval between the participant’s k-1 and k taps and ek�1 is the

perceived asynchrony at beat k-1 (relative to the mean asynchrony). Tk is the repre-
sentation of the metronome tempo (timekeeper), which is composed of two parts—a
fixed mean (t0) and a Gaussian noise component (nk), assumed to have zero mean and
variance σ2T (σT is referred to as timekeeper noise). Mk models the noise in the motor
processing also assumed to be Gaussian with zero mean and variance σ2M (σM is referred
to as motor noise). Lastly, we denote by α the phase correction, which is the proportion
of the previously perceived asynchrony that is corrected in the next tap. Optimally,
positive asynchrony deviations should be followed by shorter intervals, therefore the
phase correction parameter α appears with a negative sign. This way α= 1 corresponds
to full correction, and similarly, α= 0 will mean that the participant’s asynchrony is
carried fully into the next tap. The contribution of the timekeeper and motor noise to
performance can be separated since they influence the covariance of inter-tap-intervals
differently—only the motor noise influences both rk and rk�1. Ref.

28 showed that a naïve
implementation of this approach results in biased estimates, but under the assumption of
an upper bound on the magnitude of the motor noise (σM < σT), the parameters of the
model can be reliably estimated.

We fit the model for each block separately and averaged the two repetitions of the
isochronous condition (Fig. 3). Blocks with more than 40% missing values (omitted or
excluded taps) were excluded from this analysis (three blocks altogether, two from the same
subject which was excluded from the computational model results). Parameter fit was per-
formed using the bGLS method described in ref. 28. Importantly, the version of the algorithm
for parameter extraction in ref. 28 does not enable fitting with missing values. We adapted the
algorithm to enable fitting missing data (Supplementary Note 5). Adequate parameter
recovery using this method is shown in Supplementary Note 3 and Supplementary Fig. 6.

Experiment 2

Response dynamics to changes in tempo
To assess how participants respond to changes in the tempo we aligned the participants’
responses to the tempo change and averaged each participant’s responses to acceleration
and deceleration separately (Fig. 4). For presentation purposes, we aligned the baseline
delay intervals to the metronome tempo by subtracting the average asynchrony in the
two intervals before the change from the delay interval values of the entire segment. We

included only transitions where all responses were available from two taps before the
change (to establish a baseline asynchrony) to seven taps after the change (to assess the
full progression of the adaptation procedure). Transitions with missing values in this
range, or that were too close to the start or end of the block were excluded. Figure 4
shows only participants with at least two repetitions of a given transition magnitude and
direction (for each step-size and transition direction between one-six participants were
excluded across all groups).

Update to changes after several taps
We used the distributions of the delay intervals under each metronome tempo separately
(using data from both repetitions of each condition). We excluded the four beats
immediately following the change (including the moment of change; taking out two–six
beats after the change produced similar results). If participants fully adapt to the change,
the two distributions should be highly separable. We quantified this using three measures
(section Individuals with ASD do not fully update to tempo changes even following
several seconds, Fig. 5):

1. Sensitivity index, or d′: the difference between the means normalized by the
pooled SDs:

d0 ¼
μd1 � μd2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðσ2d1 þ σ2d2 Þ=2
q ð7Þ

Where μd1 and μd2 are the means of distributions 1 and 2 and σ2d1 and σ2d2
are the variances.

2. AUC: we create a ROC curve by varying the threshold of a binary classifier
designed to discriminate between the two distributions (such that a delay
interval below the threshold is marked as short tempo, and a delay interval
above the threshold is marked as long tempo). For each threshold, we
calculate the percentage of true positives (TPR true positive rate, delay
intervals in the short tempo that were classified correctly) and false positives
(FPR false positive rate, delay intervals in the long tempo that were classified
incorrectly as short tempo). AUC is defined as:

AUC ¼
Z 1

0
TPR FPR�1 xð Þ� �

dx ð8Þ

3. Difference between the means of the distributions (without normalizing):

μd1 � μd2 ð9Þ
Where μd1 and μd2 are the means of distributions 1 and 2.

Extended computational model of sensorimotor
synchronization
To understand whether individuals with autism manifest an impairment in their
response to external changes, we used an extension to the computational model of
Experiment 1 proposed by ref. 42, by enabling the mean of the timekeeper to vary in each
interval, i.e.,

Tk ¼ tk þ nk ð10Þ
The mean tk is expected to dynamically track the changes in tempo. This is implemented
by adding the following dynamics:

tk ¼ tk�1 � βek�1 ð11Þ
Where β denotes the period correction rate, which is the proportion of the previous
asynchrony corrected in each interval. When the tempo suddenly gets slower (decel-
eration), this will create a large negative asynchrony, since the participant will tap too
early, expecting the metronome at the time of the previous tempo. This change requires
the internal period estimate to be elongated, and since the asynchrony, in this case, is
negative β (the period correction parameter) appears with a negative sign. The full model
is defined by the coupled equations (Eqs. (2) and (7)), substituting Eq. (6) (see Figs. 3a
and 6a):

rk ¼ �αek�1 þ tk þ nk þMk �Mk�1

tk ¼ tk�1 � βek�1

ð12Þ

To combine these into one equation and fit the model we use the difference between the
model equation at time k and at time k-1:

rk � rk�1 ¼ �αek�1 þ αek�2 þ Tk � Tk�1 þMk � 2Mk�1 þMk�2 ð13Þ
Note that:

Tk � Tk�1 ¼ tk � tk�1 þ nk � nk�1 ¼ �βek�1 þ nk � nk�1 ð14Þ
So from Eqs. (13) and (14) we get:

rk � rk�1 ¼ � αþ β
� �

ek�1 þ αek�2 þ nk � nk�1 þMk � 2Mk�1 þMk�2 ð15Þ
As in Experiment 1, the covariance structure can be used to disentangle the noise terms
(although the specific structure is different, see Appendix of ref. 28).
To enhance the model’s sensitivity to changes, we fit the model separately for each tempo
change segment (from two beats before the change to seven beats following the change,
see section Response dynamics to changes in tempo) and average the resulting model
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estimates within each block. Importantly, the mean asynchrony (needed to adjust the
asynchronies relative to the participant’s perception) are estimated based on the entire
block28, therefore we excluded blocks with >40% missing values, as in Experiment 1. This
led us to exclude eight blocks altogether: one block from 50ms step-size, four blocks
from the 70 ms step-size, and three blocks from the 90 ms step-size. Within the
remaining blocks, we excluded segments with missing values, as in section Response
dynamics to changes in tempo. Adequate parameter recovery using this fitting method
(including the split into tempo change segments) is shown in Supplementary Note 3 and
Supplementary Fig. 6.

Model comparison
The extended computational model was compared to a model without timekeeper
dynamics, that is, a model defined according to Eq. (15), with period correction (β) set to
zero:

rk � rk�1 ¼ �αðek�1 � ek�2Þ þ nk � nk�1 þMk � 2Mk�1 þMk�2 ð16Þ
The models were compared for each subject separately, using the likelihood ratio test
and AIC.

Combined measures
For the model-free (Fig. 5) and model-based analyses (Fig. 6), combined measures were
calculated by z-scoring each step-size separately, then averaging over the different step-
sizes. This was done to account for the different scales of parameters estimated using
different step-sizes. Z-scoring was performed using the mean and SD of the neurotypical
group. Similarly, the combined update rate (Fig. 7) was formed by z-scoring the phase
correction estimate from Experiment 1 (α), and the combined period correction estimate
from Experiment 2 (β) and averaging them.

AQ50 questionnaire. Nineteen of 30 participants with ASD and 37 of 47 neu-
rotypical participants completed the AQ50 questionnaire44. None of the partici-
pants with dyslexia were asked to fill the AQ50. AQ50 questionnaire data were not
acquired for all neurotypical and ASD participants since it was added only after we
began collecting other experimental data.

The AQ50 is a self-report questionnaire, aimed to evaluate the presence of
several traits which are characteristic of individuals with ASD, both in ASD and in
neurotypical populations. It was recently shown that some questions in the AQ50
differentially bias neurotypical and individuals with ASD79, therefore we used the
three-factor model of the AQ50 proposed by ref. 45, which is less influenced by
these biases. We compared our calculated update rate to the social skills factor and
the communication/mindreading factor.

(*) indicate reverse keyed items. Responses vary from 0 (definitely disagree) to 3
(definitely agree).

The items in the social skill factor are:

1. I am good at social chit-chat*.
2. I find social situations easy*.
3. I enjoy social occasions*.
4. I enjoy social chit-chat*.
5. I frequently find that I do not know how to keep a conversation going.
6. I enjoy meeting new people*.
7. I find it hard to make new friends.
8. When I was young, I used to enjoy playing games involving pretending with

other children*.
9. I find myself drawn more strongly to people than to things*.
10. I enjoy doing things spontaneously*.
11. I find it very easy to play games with children that involve pretending*.
12. I would rather go to a library than to a party.

Notably, a large proportion of items in this factor (4/12) begin with the words “I
enjoy”, indicating a tendency to enjoy social situations, but not necessarily social
skills. Individuals with autism often crave social situations, despite being judged as
poor performers in this respect2.

The items in the communication/mindreading factor are:

1. People often tell me I keep going on and on about the same thing.
2. When I am reading a story, I find it difficult to work out the characters’

intentions.
3. I find it difficult to work out people’s intentions.
4. I am often the last to understand the point of a joke.
5. Other people frequently tell me that what I have said is impolite, even

though I think it is polite.
6. If there is an interruption, I can switch back to what I was doing very

quickly*.

To determine whether we can combine the two groups (neurotypical and
autism) to calculate the correlation between update rate and responses on the
communication subscale we performed a bootstrap permutation analysis, designed
to show that the correlation values in the two groups can be approximated using
the correlation in the combined sample, that is, that the correlations in the two
groups are not significantly different than the combined correlation, or different
from each other. To do this, we created surrogate distributions by resampling (with

replacement) data from the two participant groups separately, so that we formed
one distribution for neurotypical values and another for autism values. We then
calculated the Spearman correlations in each group separately, and on the
combined sample, and calculated the differences between these correlations. This
procedure was repeated 1000 times. Finally, we compared the resulting
distributions of differences between correlation values to those of the experimental
data, and in all cases the difference in the experimental data is well within the null
distribution (all p > 0.5).

Reporting Summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data generated in this study have been deposited in the OSF public repository
(https://doi.org/10.17605/OSF.IO/83WNU)80. Source data are provided with this paper.

Code availability
The custom code used to analyze the data in this study (including the implementation
used for the bGLS algorithm) and create all figures (except Figs. 1a, 3a, and 6a) is publicly
available at Zenodo (https://doi.org/10.5281/zenodo.4930034)81. Source data are
provided with this paper.
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