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Abstract Sensorimotor synchronization (SMS), the tem-
poral coordination of a rhythmic movement with an external
rhythm, has been studied most often in tasks that require
tapping along with a metronome. Models of SMS use infor-
mation about the timing of preceding stimuli and responses
to predict when the next response will be made. This
article compares the theoretical structure and empirical
predictions of four two-parameter models proposed in the
literature: Michon (Timing in temporal tracking, Van Gor-
cum, Assen, 1967), Hary and Moore (Br J Math Stat Psy-
chol 40:109–124, 1987b), Mates (Biol Cybern 70:463–473,
1994a; Biol Cybern 70:475–484, 1994b), and Schulze et
al. (Mus Percept 22:461–467, 2005). By embedding these
models within a general linear framework, the mathematical
equivalence of the Michon, Hary and Moore, and Schulze et
al. models is demonstrated. The Mates model, which differs
from the other three, is then tested empirically with new data
from a tapping experiment in which the metronome alter-
nated between two tempi. The Mates model predictions are
found to be invalid for about one-third of the trials, suggest-
ing that at least one of the model’s underlying assumptions is
incorrect. The other models cannot be refuted as easily, but
they do not predict some features of the data very accurately.
Comparison of the models’ predictions in a training/test pro-
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cedure did not yield any significant differences. The general
linear framework introduced here may help in the formula-
tion of new models that make better predictions.
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1 Introduction

Sensorimotor synchronization (SMS), usually in the form of
tapping along with a metronome, has been studied exten-
sively in recent decades (for a review, see Repp 2005), and
various models have been proposed to explain the experimen-
tal results. These models can be grouped into two categories:
(1) linear models (Hary and Moore 1985, 1987a,b; Mates
1994a,b; Michon 1967; Pressing 1998a,b, 1999; Pressing and
Jolley-Rogers 1997; Schulze et al. 2005; Schulze and Vor-
berg 2002; Thaut et al. 1998a,b; Vorberg and Schulze 2002;
Vorberg and Wing 1996) and (2) nonlinear dynamic systems
models (e.g., Large and Jones 1999; McAuley and Jones
2003). This article is concerned only with linear models,
which have dominated SMS research and lend themselves
to analytical treatment. Linear models usually contain two
parts: (a) a “deterministic” prediction of the time of the next
tap based on previous stimulus and response times, and (b)
added stochastic terms, usually Gaussian, that reflect noisy
internal processes such as clock (timekeeper) and motor var-
iance (Wing and Kristofferson 1973a,b). We focus here on
the deterministic parts of several models. The role of the
stochastic parts is considered briefly in Appendix 2.

Michon (1967) proposed a model that is completely deter-
ministic in its original version. Later models of Hary and
Moore (1985, 1987a,b) and Mates (1994a,b) have sometimes
been used with the noise terms set to zero, as may be done
when considering averaged data (e.g., Repp and Keller 2004).
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More recently, Schulze et al. (2005) proposed a new variant of
the Mates model. In this article, we will compare these four
different linear models by identifying and evaluating their
properties. We will introduce a formal framework that gen-
eralizes the assumptions underlying these models, with the
individual models presented as specific cases. Then, using a
newly collected set of data, we will use the accuracy of each
model’s predictions as an objective measure of its success.

We will begin by considering the model proposed by
Mates (1994a,b), which postulates two internal processes
(period correction and phase correction) that are based on
specific perceptual information. Next, we will analyze Mi-
chon’s (1967) pioneering linear prediction model, which is
based on recent asynchronies between taps and metronome
ticks. We will then examine one of the models proposed by
Hary and Moore (1985, 1987a,b), which makes a prediction
based on two reference points, either the last metronome
beat or the last response (“mixed phase resetting”). Finally,
we will consider the variant of the Mates model employed
by Schulze et al. (2005), in which period correction is based
on different perceptual information than in the Mates model.

As we will demonstrate, we can embed these models
within a general linear framework similar to the ones envi-
sioned by Thaut et al. (1998a,b), Hasan and Thaut (1999),
and Pressing (1999). More specifically, we will see that each
model has two adjustable parameters that can be expressed
within what we will call the Canonical XY model. Further-
more, we will see that the Michon, Hary and Moore, and
Schulze et al. models are equivalent in the sense that we can
map their parameters onto those of the Canonical XY model.
Conversely, we can map any parameters of the Canonical XY
model to parameters of the Michon, Hary and Moore, and
Schulze et al. models. The models differ in the “naming”
and psychological interpretation of the parameters, but they
are equivalent mathematically and therefore make the same
predictions. However, the Mates model is not equivalent to
the other three, and makes further assumptions. Therefore,
we can try to validate those further assumptions by experi-
mental data, and test the accuracy of the model.

This article is divided into four parts: An introduction pre-
senting the general linear framework is followed by a review
of specific models from the literature and their representation
within the Canonical XY model. In the third section, we com-
pare the success of these different models in explaining newly
collected data, using the prediction error as an objective mea-
sure. The fourth section is a general discussion. Two appen-
dices provide additional details about parameter estimation
methodsand introduceanewmethod thatweapply toourdata.

2 Introducing the linear framework

Figure 1 shows the overall structure of our framework. The
model takes as input the times of occurrence of past stimuli

S(i) and responses R(i), or the stimulus inter-onset inter-
vals s(i) and response inter-onset intervals r(i), where i is
an integer index running from 1 to k, the present. Let us fur-
ther denote by e(i) the asynchrony or synchronization error
R(i) − S(i).

The stimuli and responses are input information avail-
able to our brain. The brain processes the input and makes
a prediction regarding the timing of the next response to an
expected stimulus. This prediction is executed through our
motor system, which produces the next response R(k + 1).
The aim of any model is to mimic this behavior and accu-
rately predict the next response by deriving R′(k + 1), the
predicted time of the response, from the past S(i) and R(i)
for i = k, k−1, k−2. . . We can empirically estimate the pre-
diction error of a model by calculating R′(k +1)− R(k +1).
This gives us an objective measure by which to evaluate mod-
els: A better model has a smaller prediction error for a given
set of experimental data.

The deterministic part of a linear model consists of input
variables and parameters. The parameter values are the
weights that are given to the input variables, and are usu-
ally determined by fitting the model to data. The best values
are those that achieve minimal prediction error. Given those
weights, the prediction is calculated by multiplying each of
the input variables by its appropriate weight (a, b, c, . . .) and
taking the sum. For example, if the model structure consists
of the variables S(k), S(k − 1), R(k), and R(k − 1), the
prediction of the model would be

R′(k + 1) = a ∗ S(k) + b ∗ S(k − 1)

+c ∗ R(k) + d ∗ R(k − 1). (1)

The root mean squared prediction error of the model in (1)
is

E = sqrt

⎧
⎨

⎩

∑

i=3,4,...N

[
R′(i) − R(i)

]2
/(N − 2)

⎫
⎬

⎭
, (2)

where N is the number of taps in the experimental data and
sqrt is the square root.

Note the following combinatorial identity between s(k),

r(k), e(k), and e(k − 1):

s(k) = e(k − 1) + r(k) − e(k). (3)

Proof

e(k − 1) + r(k) − e(k) = [R(k − 1) − S(k − 1)]

+ [R(k) − R(k − 1)] − [R(k) − S(k)] = s(k).

Figure 2 depicts a graphical representation of the preceding
proof: The sum of any closed path between nodes in the graph
is zero. For example, we start at S(k) and go counter-clock-
wise to S(k − 1), followed by R(k − 1), then continuing to
R(k), and ending at S(k), closing the cycle where we began.
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Fig. 1 The general linear
framework. S stimulus;
R response; s stimulus interval;
r response interval; e
synchronization error
(asynchrony); f, g, h parameter
weights in a general
linear model

Fig. 2 Detail of a closed path in the general linear model

Therefore, s(k)− e(k − 1)− r(k)+ e(k) = 0, leading to the
combinatorial identity of Eq. 3. Note that the signs in Eq. 3
are determined by the direction of the arrows in Fig. 2: We
have a minus sign when our path takes us against the direc-
tion of the arrow, and a plus sign when our path accords with
the direction of the arrow.

This principle holds also for any other closed path in the
larger structure that results from extending the graph in Fig. 2

backward in time (cf. Fig. 1), leading to further combinatorial
identities, for example

s(k) + s(k − 1) − e(k − 2) − r(k − 1) − r(k) + e(k) = 0.

(4)

The combinatorial identity in Eq. 3 relates the asynchronies
e(k) and e(k − 1) and the response interval r(k) to the stim-
ulus interval s(k). Therefore, if we know e(k), r(k), and e
(k −1), then s(k) is determined by Eq. 3. If we know all past
asynchronies and response intervals, we can reconstruct the
stimulus interval sequence, and the most general model we
can construct will take into account as variables the entire
asynchrony and response sequence. The formula for a gen-
eral linear model is

r(k + 1) =
∑

i=0...k−1

[gi ∗ e(k − i) + hi ∗ r(k − i)]

+Z(k + 1), (5)

where Z(k + 1) is a stochastic error term (usually assumed
to be Gaussian), and r ′(k + 1) = r(k + 1) − Z(k + 1).

Note that any other linear model can be nested within this
model. As we will see, the Mates, Michon, Hary and Moore,
and Schulze et al. models can be presented as specific choices
of gi , hi , and Z(k + 1).
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The combinatorial identity (Eq. 3) also enables us to
choose other variables for our general model. For example,
we could have chosen s(k) and e(k) instead of e(k) and r(k),
obtaining equivalent results. In this case, the formula for the
general linear model would have been

r(k + 1) =
∑

i=0...k−1

[ fi ∗ s(k − i) + gi ∗ e(k − i)]

+Z ′(k + 1), (6)

where again Z ′(k+1) is a stochastic variable. Note that also
for this model, any other linear model can be written as a
specific choice of fi , gi , and Z ′(k + 1). In the context of this
article, we are going to work with Eq. 5, and we will select
the asynchronies and response intervals as the variables for
our models.

3 Linear models from the literature and their
representation

In this section, we will present the Mates, Michon, Hary and
Moore, and Schulze et al. models, and see how they fit into
the general framework introduced in Part 1. Specifically, we
are going to represent those models’ predictions r ′(k + 1) as
a function of e(k), e(k − 1), and r(k).

Note that the Mates, Hary and Moore, and Schulze et al.
models have a stochastic and possibly autocorrelated noise
term Z(k + 1). In the entire following discussion, we will
consider only the deterministic part of those models. This is
equivalent to Z(k) being uncorrelated or cov[Z(k), Z(k +
j)] = 0 for j > 0 because then the best estimate of the next
step is the deterministic part (see Rao and Toutenburg 1999).
See Appendix 2 for a more general discussion that takes the
error term Z(k + 1) into account.

3.1 The Mates model

The Mates (1994a,b) model considers two different error
correction processes: period correction and phase correc-
tion. This model creates a control system similar to a
phase-locked loop (Best 2003; Dorf 1993). It includes both
external (observable) and internal (hypothetical psychologi-
cal) variables.

Period correction relies on an internal variable tI(k) called
a timekeeper. (The subscript indicates that it is internal.)
The timekeeper is similar to a metronome, and its interval
is continually updated by the current stimulus interval. The
next timekeeper interval tI(k) is a function of the difference
between the previous timekeeper interval tI(k − 1) and the
stimulus interval s(k) = S(k) − S(k − 1), multiplied by β,
the period correction parameter. As β approaches 1, the inter-
nal timekeeper is increasingly affected by the last stimulus

interval, and less by the previous timekeeper interval. The
formula for internal timekeeper updating thus is

tI(k) = tI(k − 1) − β ∗ [tI(k − 1) − s(k)] . (7)

Phase correction is an instantaneous correction mechanism
dependent on the last asynchrony e(k). The phase correc-
tion parameter α determines the degree by which the model
prediction will be affected by the asynchrony. The formula
for the prediction of the next response interval r ′(k + 1) =
R′(k + 1) − R(k) is therefore

r ′(k + 1) = tI(k) − α ∗ e(k). (8)

We propose writing the Mates model as a function of
e(k), e(k − 1), and r(k), so that the model can be rewrit-
ten as

r ′(k + 1) = (−α − β) ∗ e(k) + (α + β − α ∗ β) ∗ e(k − 1)

+r(k). (9)

Proof From Eq. 8, we can infer that r ′(k) = tI(k − 1) − α ∗
e(k − 1), and from this we get

tI(k − 1) = r ′(k) + α ∗ e(k − 1).

By substituting tI(k − 1) in Eq. 7 we get

tI(k) = (1 − β) ∗ [
r ′(k) + α ∗ e(k − 1)

] + β ∗ s(k), (10)

or

tI(k) = (1 − β) ∗ r ′(k) + α ∗ (1 − β) ∗ e(k − 1)

+β ∗ s(k). (11)

We substitute tI(k) in Eq. 8 with Eq. 11 and get

r ′(k + 1) = (1 − β) ∗ r ′(k) + α ∗ (1 − β) ∗ e(k − 1)

+β ∗ s(k) − α ∗ e(k). (12)

We can also use the combinatorial identity of Eq. 3 and sub-
stitute s(k) in Eq. 12:

r ′(k + 1) = (1 − β) ∗ r ′(k) + α(1 − β) ∗ e(k − 1)

+β ∗ [e(k − 1)+r(k)−e(k)] −α ∗ e(k), (13)

or

r ′(k + 1) − (1 − β) ∗ r ′(k) = (α + β − α ∗ β) ∗ e(k − 1)

+β ∗ r(k) − (α + β) ∗ e(k). (14)

At k +1, r ′(k) is already known; therefore, we can substitute
it with the real value r(k). This step significantly simplifies
the calculations.1 After substituting r ′(k) with r(k), we get

r ′(k + 1) = (−α − β) ∗ e(k) + (α + β − α ∗ β)

∗e(k − 1) + r(k), (15)

which completes the proof (cf. Eq. 9). ��
1 We have carried out experimental analyses with and without this extra
assumption, and it seems that the difference is slight. An alternative cal-
culation without this further assumption is described in Appendix 2.
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Note that this formula is symmetric in α and β. This means
that if we swap the values of α and β, we will get the same
predictions, a fact pointed out previously by Repp (2001a,
2005). This also means that if we fit the model parameters,
we cannot determine which value belongs to which param-
eter, except perhaps by external criteria. We can also see
that even though the model is linear in the input variables
e(k), e(k − 1), and r(k), the coefficients multiplying them
are not linear in α and β.

To be more concise, if we write the Mates model as

r ′(k + 1) = x ∗ e(k) + y ∗ e(k − 1) + r(k), (16)

then

x = −α − β (17)

and

y = α + β − α ∗ β. (18)

The parameter y has the term α∗β and is therefore a nonlinear
function of α and β.

By writing r ′(k + 1) as a function of e(k), e(k − 1), and
r(k), we have expressed r ′(k + 1) without explicitly using
the internal timekeeper. Instead, its correction parameter β

together with the phase correction parameter α determines
the model coefficients x and y.

3.2 The Michon model

Michon (1967) (see also Michon and van der Valk 1967)
introduced a simple model that bases its prediction upon the
last few asynchronies. Michon specifically mentioned one-
and two-parameter versions of this model, while his general
model states that the predicted response interval is a func-
tion of the last stimulus interval and all past asynchronies.
The formula for the general model is r ′(k + 1) = s(k) +
∑

i=0...k−1 [ fk ∗ e(k − i)]. In this article, we will consider
the two-parameter version of the Michon model.

In the notation we previously introduced, this model can
be written as

r ′(k + 1) = s(k) + a ∗ e(k) + b ∗ e(k − 1). (19)

Using Eq. 3, we can substitute s(k) with e(k − 1) + r(k) −
e(k) and get

r ′(k + 1) = e(k − 1) + r(k) − e(k) + a ∗ e(k)

+b ∗ e(k − 1) (20)

or

r ′(k + 1) = (a − 1) ∗ e(k) + (1 + b) ∗ e(k − 1)

+r(k). (21)

We can rewrite Eq. 21 as

r ′(k + 1) = x ∗ e(k) + y ∗ e(k − 1) + r(k), (22)

where

x = a − 1 (23)

and

y = 1 + b. (24)

Note the striking similarity between Eqs. 22–24 and the
Mates model Eqs. 16–18. However, there is an important dif-
ference: In the Michon model, x and y are linear functions
of parameters a and b, whereas in the Mates model, y is
multiplicative in parameters α and β.2

3.3 The Hary and Moore model

The Hary and Moore (1985, 1987a,b) model consists of an
internal delay time, t (k), similar to Mates’ internal time-
keeper in that it is updated by an “error” signal, in this case
the most recent asynchrony. Using the equation from Hary
and Moore (1987b, p. 121, Formula 40):

t (k + 1) = t (k) − f ∗ [e(k) + ne(k)] , (25)

where t (k+1) is the updated internal delay, and f is a constant
called the “feedback fraction.” Also, ne(k) is a “noise” factor
that we omit in the following equations (see Appendix 2).

This model prediction is dependent on the choice of refer-
ence for each phase reset (i.e., the point from which the inter-
nal delay t (k + 1) is measured). The phase could be reset to
the metronome, so that the next prediction will be calculated
from the last metronome time, S(k), or to the last response,
in which case the delay is calculated from the response time,
R(k). Therefore, the Hary and Moore model prediction is

R′(k + 1) = R(k) + t (k) + nr(k) with probability g, and

R′(k + 1) = S(k) + t (k) + nr(k) with probability (1 − g),

(26)

where nr(k) is an additional independent noise factor (such
as motor peripheral noise) that we again omit in the following
equations.3

Later, the authors transformed this model into a determin-
istic model. Instead of a probabilistic selection between a
metronome and a response resetting, they made the reset a
linear function of R(k) and S(k), rewriting their Formulae
38–40 (Hary and Moore 1987b, p. 121) to produce a “com-
bined-reset” strategy:

R′(k + 1) = g ∗ R(k) + (1 − g) ∗ S(k) + t (k) (27)

t (k + 1) = t (k) − f ∗ e(k) (28)

2 This means that all parameters of the Mates model can be mapped
to parameters of the Michon model (while the reverse may not be true).
For a detailed explanation and discussion of this claim, see Sect. 3.6.
3 Note that Hary and Moore denote our S(k) by Mi and our g by a.
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Note that this is similar but not identical to the Mates model.
As we did in Mates’ case, we will now rewrite the model.
From Eq. 27, we can deduce that

t (k) = R′(k + 1) − g ∗ R(k) − (1 − g) ∗ S(k). (29)

Substituting t (k) in Eq. 28 with Eq. 29 we get

t (k + 1) = R′(k + 1) − g ∗ R(k) − (1 − g) ∗ S(k)

− f ∗ e(k), (30)

or

t (k) = R′(k) − g ∗ R(k − 1) − (1 − g)

∗S(k − 1) − f ∗ e(k − 1). (31)

Substituting t (k) in Eq. 27 with Eq. 31 we get

R′(k + 1) = g ∗ R(k) + (1 − g) ∗ S(k) + R′(k)

−g ∗ R(k − 1) − (1 − g) ∗ S(k − 1)

− f ∗ e(k − 1). (32)

Again substituting R′(k) with R(k) (see our discussion of
Mates’ model), and rearranging the terms

R′(k + 1) = R(k) + g ∗ r(k) + (1 − g) ∗ s(k)

− f ∗ e(k − 1). (33)

Using Eq. 3 to substitute for s(k)

R′(k + 1) = R(k) + g ∗ r(k) + (1 − g)

∗ [e(k − 1) + r(k) − e(k)]

− f ∗ e(k − 1), (34)

or

R′(k + 1) = R(k) + r(k) + (1 − g − f ) ∗ e(k − 1)

+(g − 1) ∗ e(k), (35)

or

r ′(k + 1) = (g − 1) ∗ e(k) + (1 − g − f ) ∗ e(k − 1)

+r(k). (36)

This is almost identical to Michon’s model (Eq. 21). Note
that we can again write the model in the form:

r ′(k + 1) = x ∗ e(k) + y ∗ e(k − 1) + r(k), (37)

where

x = g − 1 (38)

y = 1 − g − f (39)

These parameters are linear functions of f and g, and there-
fore we can “translate” every model of the form of Eq. 36
(Hary and Moore) to a model of the form of Eq. 21 (Michon)
and vice versa. We can say that those models are equivalent,

since after the translation the models make the same predic-
tions and therefore also have the same empirical prediction
error.

3.4 The Schulze et al. model

Formulae 2 and 4 in Schulze et al. (2005, p. 462) pres-
ent an alternative to the Mates model. For Schulze et al.,
phase correction depends on dual temporal references (as in
the Hary and Moore model), which is formally equivalent
to depending on the preceding asynchrony, but period cor-
rection depends on the preceding asynchrony4, too, not on
a comparison of s(k) and the internal timekeeper interval
tI(k). A deterministic version of their model can therefore be
expressed as

tI(k) = tI(k − 1) − β ∗ e(k − 1), (40)

r ′(k + 1) = tI(k + 1) − α ∗ e(k). (41)

As in the other three cases presented above, we can compute

r ′(k) = tI(k) − α ∗ e(k − 1) (from Eq. 41) (42)

tI(k) = r ′(k) + α ∗ e(k − 1) (reordered) (43)

tI(k + 1) = tI(k) − β ∗ e(k) (from Eq. 40) (44)

tI(k + 1) = r ′(k) + α ∗ e(k − 1) − β ∗ e(k)

(substitution of tI(k)) (45)

r ′(k + 1) = r ′(k) + α ∗ e(k − 1) − β ∗ e(k) − α ∗ e(k).

(substitution of tI(k + 1) in Eq. 41) (46)

And again, replacing r ′(k) by r(k), we get

r ′(k + 1) = (−α − β) ∗ e(k) + α ∗ e(k − 1) + r(k). (47)

As is readily evident, this model is also equivalent to the
Michon and Hary and Moore models. Here,

x = −α − β (48)

y = α (49)

3.5 The Canonical XY model

As we have seen, all models discussed so far can be repre-
sented by the same formula:

r ′(k + 1) = x ∗ e(k) + y ∗ e(k − 1) + r(k), (50)

where x and y are functions of the model parameters (a, b) in
Michon, of (α, β) in Mates and Schulze et al., and of ( f, g)
in Hary and Moore. Let us consider a Canonical XY model,
where (x, y) are arbitrary constants. As we saw, the mod-
els of Michon, Hary and Moore, and Schulze et al. all make

4 Please, note that we believe Eq. 2 in Schulze et al. (2005) to be erro-
neous. In their indexing scheme, which is different from ours, their
term Ai−1 refers to our e(k − 2). We believe they actually meant Ai =
e(k − 1).
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the same prediction and thus are equivalent to the Canon-
ical XY model, after their parameters have been properly
mapped. However, while we can map any parameter (α, β)

of the Mates model onto a Canonical XY model with param-
eters (x, y) if x = −α−β and y = α+β−α∗β, the reverse
is not true; there are parameters (x, y) of the Canonical XY
model such that there is no (α, β) where the Mates model will
have the same predictions. This is significant, as it means that
the Mates model restricts the possible (x, y) values, meaning
that we can use empirical data to check whether the Mates
model is indeed correct.

3.6 The Mates model versus other models

We can determine the range of possible (x, y) values in the
Mates model by the following calculation of the inverse func-
tion F−1

Mates(x, y). The inverse of the function FMates(α, β) =
(−α − β, α + β − α ∗ β) = (x, y) has two possible values:

(α, β) =
{[

−x + sqrt(x2 + 4x + 4y)
]
/2,

[
−x − sqrt(x2 + 4x + 4y)

]
/2

}
(51)

and

(α, β) =
{[

−x − sqrt(x2 + 4x + 4y)
]
/2,

[
−x + sqrt(x2 + 4x + 4y)

]
/2

}
. (52)

Proof From Eq. 17, we can deduce that β = −x −α. Substi-
tuting this in Eq. 18, we get

y = −x + α ∗ x + α2

or

−x − y + α ∗ x + α2 = 0.

This is a quadratic equation in α, and its two solutions are

α =
[
−x + / − sqrt(x2 + 4x + 4y)

]
/2. (53)

Since β = −α − x,

β =
[
−x − / + sqrt(x2 + 4x + 4y)

]
/2, (54)

which is the parameter symmetry we have noted earlier. ��
A very important consequence of this calculation is that

when y < −x − x2/4 or (x2 + 4x + 4y < 0) there is no
inverse F−1

Mates(x, y). It means that not all pairs (x, y) can be
obtained from any α and β. When (x, y) are in the range
y > −x − x2/4, there are two solutions (see Eqs. 42, 43).
For example, for x = −0.7 and y = 0.58, the two solutions
are α = 0.4, β = 0.3 and α = 0.3, β = 0.4. When y =
−x − x2/4, there is one solution in which α = β. Figure 3
shows the two-dimensional space of all the pairs (x, y). This
space is divided by the function y = −x − x2/4 into two dis-
tinct regions: A “possible Mates region” (y ≥ −x − x2/4)

where (x, y) of the Mates model can be obtained by some α

and β, and an “impossible Mates region” (y < −x − x2/4)

where (x, y) cannot be obtained by any α and β.
As the Mates model predicts that (x, y) will be in the pos-

sible Mates region while the Canonical XY model does not
make this prediction, we can empirically distinguish between
them. If the Mates model is correct, then the (x, y) that we
would get by fitting the Canonical XY model to data would
be in the possible Mates region. The importance of this result
lies in that we can test empirically if the Mates model is cor-
rect. We do this by simply finding the best Canonical XY
model for an experimental data set, and seeing if its (x, y) lie
in the possible Mates range.

4 Experimental comparison of models

Let us now investigate whether the Mates model is correct by
comparing its predictions with empirical data. If the model
holds, then we expect that the true response intervals r(k+1)

will be the predicted r ′(k + 1), plus some independent noise
n(k).5 Therefore, we expect:6

r(k + 1) = (−α − β) ∗ e(k) + (α + β − α ∗ β)

∗e(k − 1) + r(k) + n(k).

If we then fit the Canonical XY model to data and find that
(x, y) = (−α − β, α + β − α ∗ β) for some α and β, then
these (x, y) are in the possible Mates region.

In practice, we can fit the Canonical XY model to many
data sets and plot the resulting (x, y) on a diagram simi-
lar to Fig. 3 to see whether the (x, y) represented as points
fall inside the possible Mates region. If we get many (x, y)
outside the possible Mates region, this will question the valid-
ity of the Mates model. We will also compare the Mates and
Canonical XY models with regard to their prediction error. 7

To compare these model predictions, we used data from
a synchronization task that employed metronome sequences
containing abrupt changes in tempo, so-called step changes
(Michon 1967; Repp 2001b; Repp and Keller 2004). These
changes were introduced in order to induce updating of the
internal timekeeper (i.e., period correction), which is the dis-
tinctive component of the Mates model that accounts for its

5 Here, we assume that all n(k) are i.i.d. (independent and identically
distributed) Gaussian random variables with zero mean. Appendix 2
discusses the more general case where this assumption may not hold.
6 Assuming that the noise n(k) is Gaussian, and in order to evaluate
empirically the parameters that minimize the prediction error

∣
∣
∣
∣r ′ − r

∣
∣
∣
∣,

we need to use the formulae given in Appendix 1.
7 Since the Canonical XY model is equivalent to the Michon, Hary
and Moore, and Schulze et al. models, we are effectively comparing all
these models to the Mates model.
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Fig. 3 The two-dimensional Space of (x, y) values, illustrating the
boundary on possible parameter values imposed by the Mates model

parameters’ nonlinearity8. Without such tempo changes, the
β parameter would most likely be close to zero, and the Mates
model would be indistinguishable from the other models.9

4.1 Methods

The participants were all musically trained: they included 8
graduate students of the Yale School of Music (4 men and
4 women, ages 22–26) and author BHR (age 65). The musi-
cians’ primary instruments were piano (2), violin (3), viola,
cello, and oboe, which they had studied for 13–21 years.
Author BHR is a lifelong amateur pianist with 10 years of
training in childhood. All were regular participants in syn-
chronization experiments, and the students were paid for their
participation.

Auditory sequences (trials) consisted of 99 digital piano
tones with a fundamental frequency of 261 Hz (C4) and
a nominal duration of 40 ms. The implied baseline inter-
onset interval (IOI) was 500 or 800 ms. Each trial alternated
between two tempi: fast and slow. Trials varied in the magni-
tude of the deviations from the baseline IOI, ranging from±2,
±6, ±10, ±14 to ±18 %. For example, a trial with baseline
IOI = 800 ms and ±10 % deviations alternated between actual
IOIs of 720 and 880 ms. Each trial started with the faster
tempo, followed by about ten step changes (abrupt changes
in IOI from one value to the other). Each new step change
occurred randomly within 8–12 metronome beats after the
previous change. Trials were separated by short pauses deter-
mined by the participant. Each participant completed two

8 Note that the term “nonlinearity” here refers to the parameters and
not to the Mates model.
9 Schulze et al. (2005) used gradual tempo changes to compare their
model with the Mates model and found smaller prediction errors with
their model.

blocks of ten trials each (2 baseline IOIs × 5 deviation mag-
nitudes). The task was to tap in synchrony with each tone,
starting with the third tone in each sequence, and to adjust as
quickly as possible to any tempo change.

The tone sequences were generated on-line by a program
written in MAX 4.0.9, running on an Intel iMac computer.
The tones were produced by a Roland RD-250s digital piano
according to musical instrument digital interface (MIDI)
instructions from the MAX program and were presented over
Sennheiser HD280 pro headphones. Participants tapped on
a Roland SPD-6 electronic percussion pad, held on the lap.
Finger impacts were audible as thuds, the loudness of which
depended on individual tapping force but was attenuated con-
siderably by the circumaural headphones.

4.2 Analysis of the experimental data

Figure 4 shows the first 30 s of a typical trial. Stimulus inter-
vals s(k) (=IOIs) and response intervals r(k) are displayed
in the top graph, and asynchronies are displayed in the bot-
tom graph. Also shown here are the predictions of the Mates
model and of the Canonical XY model. The parameters for
the models were obtained by finding the minimal root mean
squared prediction error sqrt (||(R′ − R)2||). An analytic for-
mula for the fitted parameters of both the Mates and the
Canonical XY model is given in Appendix 1. The figure
also illustrates the initial “overshoot” in inter-response inter-
vals that is typically observed in response to perceptible step
changes (Michon 1967; Repp 2001b).

As another example, Fig. 5 displays the average response
(across all participants and trials but only for a step change
from 545 to 455 ms) aligned to beat 0, the beginning of
the step change. We can see that neither model predicts the
observed mean values exactly, but the Canonical XY model
does so somewhat better than the Mates model.

Figure 6 show the average response (linearly normalized
by setting the step change equal to ±1 and expressing the
response relative to it) across all participants for different
step changes around baseline IOIs of 500 and 800 ms, respec-
tively. This graph may be compared with one shown in Repp
and Keller (2004, Fig. 3A), although there the data were
not normalized. We can see that the amount of initial “over-
shoot” (Michon 1967) was larger for large than for small step
changes, with no overshoot for the smallest changes. This
difference has been observed previously (Repp 2001b; Repp
and Keller 2004; Thaut et al. 1998a,b) and in the context of
the Mates model has been attributed to a dependence of β

(period correction) on participants’ awareness of the tempo
change.

The Canonical XY model states that

r ′(k + 1) = x ∗ e(k) + y ∗ e(k − 1) + r(k). (55)
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Fig. 4 The first 30 s of a typical trial, with best fits of the Mates
and Canonical XY models. Upper panel Intervals [ISI = inter-stim-
ulus interval = s(k) = IOI; IRI inter-response interval = r(k)]. Lower
panel Asynchronies

Note that if the perturbation (a step change from s = s1

to s = s2) happened at beat k, we expect r(k) = s1, because
the change could not be anticipated (Michon 1967). There-
fore, the expected e(k) = s1 − s2. Before the perturba-
tion, subjects are synchronized with the stimulus so that
e(k − 1) ∼ 0. Therefore, at the time of the perturbation

Fig. 5 Mean of all participants’ responses to a step change from 545
to 455 ms, with best fits of Mates and Canonical XY models

r ′(k + 1) = x ∗ (s1 − s2) + s1

or

overshoot factor = [
r ′(k + 1) − s1

]
/(s2 − s1) = −x . (56)

Therefore, −x determines the “overshoot factor”.
Note that the Mates model maps −α − β onto x of the

Canonical XY model, so we can also say that

overshoot factor = α + β, (57)

where α and β are the Mates model’s parameters. This corre-
sponds to previous assumptions that the overshoot represents
the additive effects of phase and period correction (Repp
2001b; Repp and Keller 2004). When (α + β) < 1, there is
no overshoot.

4.3 Experimental evaluation of the Mates model

Were the Mates model “correct,” we would expect to see
all pairs of (x, y) obtained by fitting10 the Canonical XY
model to be within the possible Mates region (see Sect. 3.6).
Figures 7 and 8 show the best-fitting (x, y) pairs for the
Canonical XY model. Each point represents the parameters
obtained from a single trial. Out of the 180 trials (9 partici-
pants × 2 base IOIs × 5 step change magnitudes × 2 blocks),
59 (32.7 %) were located in the impossible Mates region. This
challenges the Mates model, which predicts that all (x, y)
pairs of the Canonical XY model should lie within the pos-
sible Mates region. Of course, the parameter estimation may
be subject to error, but in Appendix 2 we demonstrate that the

10 See Appendix 1 regarding the fitting procedure.
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Fig. 6 Mean linearly normalized responses to step changes of differ-
ent sizes, with base inter-onset intervals (IOIs) of 500 ms (upper panel)
and 800 ms (lower panel)

chances that the Mates model parameters are in the impossi-
ble Mates region just as a consequence of estimation error is
extremely small (p < 1e−5).

We can see also different distributions of (x, y) val-
ues for the two different base IOIs. For base IOIs of 500
and 800 ms, the mean (x, y) values were (−1.58, 1.00)
and (−1.66, 1.11), respectively. Both means fall within the
possible Mates region, but the first one just barely. The

Fig. 7 Mean (x, y) parameter estimates of the Canonical XY model
for individual participants (BHR is the second author), separately for
each of the two base IOIs (500 and 800 ms)

Fig. 8 Mean (x, y) parameter estimates of the Canonical XY model
for individual participants, separately for each step size

x and y parameters also depended on the step size of
the tempo changes we introduced, with both parameters
decreasing as step size increased. We assessed the statis-
tical reliability of these effects in separate 2 (base IOIs)
× 5 (step sizes) repeated-measures ANOVAs (with Green-
house–Geisser correction) on the two parameters. The main
effects of base IOI and of step size, were significant for x
(F(1, 8) = 8.62, p = 0.019; F(4, 32) = 6.22, p = 0.004)

and for y (F(1, 8) = 28.57, p = 0.001; F(4, 32) = 6.88,
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Fig. 9 Mean (α, β) parameter estimates of the Mates model for indi-
vidual participants, separately for each of the two base IOIs (500 and
800 ms)

p = 0.013), whereas the interaction was not significant for
either.

In Fig. 9, we can see the parameters obtained for the Mates
model. Note that since α and β are interchangeable, we can-
not determine which is which, except by external criteria.
The points clustered on the α = β line are the ones that are
in the impossible Mates region in Fig. 7. These points are
on this line because the best fit without constraining parame-
ters to the possible Mates region is outside the possible Mates
region. Therefore, adding the Mates constraint gives a best fit
that is on the boundary of the impossible Mates and possible
Mates regions.11 If we optimized the Mates model instead
of the Canonical XY model, yet still displayed the results
in an (x, y) diagram as in Fig. 7, all the points would have
been either in the possible Mates region or on the boundary
y = −x − x2/4. This boundary is mapped to the α = β line
when applying the transformation from the (x, y) plane to
the (α, β) plane.

11 A formal proof of this is given in Appendix 1.

4.4 Mates model versus Canonical XY model: evaluation
of the prediction error

We return now to our evaluation of the Mates model. Let
us consider the prediction error of a model m, Em =∣
∣
∣
∣R − R′

m

∣
∣
∣
∣. An analytic formula for the fitted parameters

of both the Mates and the Canonical XY model is given in
Appendix 1. The prediction error of the Canonical XY model
must be smaller than or equal to that of the Mates model,
since in the parameter estimation process in both cases we
minimize Em, but in the Mates case the optimization process
has more constraints, which implies EMates ≥ ECanonical XY.
(See Appendix 1 for proof.) This does not necessarily mean
that the Canonical XY model prediction is actually better, as
it could be a consequence of a phenomenon called “overfit-
ting” (Hastie et al. 2001; Vapnik 1998). Overfitting occurs if
the model actually captures noise in the data, in addition to
the systematic variation of interest. If the data set used for
estimating the prediction error (the test data set) is different
from the one used to estimate the parameters (the training
data set), we obtain a better estimate of the “true” predic-
tion error (or the “generalization error” of Vapnik 1998). As
this is a common practice in the statistical learning literature
(Hastie et al. 2001), we adopted it here also. We trained the
model on one half of the data and then applied the estimated
parameter values to the other half. This procedure could be
done in our case, since we had two identical blocks of trials
for every participant, and therefore we used the first block as
training set and the second block as a test set.

Mathematically speaking, the Canonical XY model will
always yield a smaller prediction error than the Mates model
on the training data set. However, this may not apply to the
test set. In theory, the prediction error could be smaller for the
Mates model than for the Canonical XY model in the test set.
In fact, the percentage of the test set trials where the Mates
model had a smaller prediction error (18 %) was almost the
same as the percentage of trials where the Canonical XY
model had the smaller error (16 %)12.

For the remaining trials, the two models made the same
predictions because the (x, y) parameters were in the possi-
ble Mates region. We also trained the models on the trials
from the second block and tested them on the trials from the
first block. This led to very similar results.

4.5 Parameter estimates for all models

In Fig. 10, we display the mean parameter values of all four
models from the literature as a function of base IOI and step

12 Note that the percentage of trials where the two models differ is
determined by the training set (since we estimate the model parameters
from the training set, and if they provide an equivalent solution on the
training set they will be equivalent also on the test set).
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Fig. 10 Mean parameter values
of four models as a function of
IOI and step size

size. They were subjected to two-way ANOVAs like the one
on the parameters of the Canonical XY model. The param-
eter values were derived from the best-fitting parameters of
the Canonical XY model by simple linear transformations,
as described in Sect. 3, except in the case of the Mates model,
for which the detailed parameter values are those shown in
Figs. 7 and 8.

Although α and β are interchangeable in the Mates
model, reference to earlier empirical findings (e.g., Repp and
Keller 2004) allows us to interpret the larger parameter as
α (phase correction) and the smaller one as β (period cor-
rection). Both parameters had positive values, as expected.
The results (Fig. 10a) indicate that α was surprisingly large
and decreased as step size increased, F(4, 32) = 5.73, p =
0.022, an unexpected finding. It was also larger at the slower
base tempo, F(1, 8) = 26.93, p = 0.001, which is expected
(cf. Repp 2008). By contrast, β increased with step size,
F(4, 32) = 10.85, p < 0.001, as expected (cf. Repp 2001b),
but was smaller at the slower base tempo, F(1, 8) = 8.29,
p = 0.021. The large percentage of estimates in the impos-

sible Mates region, which forced α = β, may have distorted
these trends. We examined the data for three participants who
had very few values in the impossible Mates region. Their
Mates parameters were almost identical to their Schulze et al.
parameters (to be discussed shortly), as they should be.

The Michon parameters (Fig. 10b) were similar to those
of the Canonical XY model because a = 1 + x and b =
y − 1. Therefore, the trends and statistical results were the
same. However, the parameters can be interpreted more eas-
ily within the Michon model. Their values indicate that the
timing of the next tap depended primarily (and negatively) on
the preceding asynchrony (weight a) and only little (but pos-
itively) on the asynchrony one position back (weight b). This
asymmetry increased with step size. Surprisingly, however,
it decreased as the base IOI increased.

The Hary and Moore parameters (Fig. 10c) show a some-
what different pattern. The g parameter is straightforwardly
related to y because g = 1 − y, but f = −x − y. The
former increased with step size and was smaller at the slower
base tempo (statistics as for y), whereas the latter clearly

123



Biol Cybern (2012) 106:135–154 147

increased with step size, F(4, 32) = 11.58, p < 0.001, but
did not depend on base IOI. The results seem puzzling ini-
tially because g is a probability and thus should have only
positive values. Instead, its values tended to be negative, sug-
gesting at the very least that phase resetting was entirely
stimulus based. Indeed, the negative values of g may indi-
cate overshoot in stimulus-based phase resetting, equivalent
to a phase correction parameter greater than 1. The f param-
eter represents period correction, and both its mean values
and its increase with step size are as expected.

Finally, the parameters of the Schulze et al. model
(Fig. 10d) are readily interpretable as phase correction
(α = y) and period correction (β = −x − y), respectively.
The β parameter is equal to f in the Hary and Moore model,
whereas α = 1 − g and thus reveals phase overcorrection at
small step sizes and at the slower base tempo. The statistics
are the same as for the Hary and Moore model. The Schulze et
al. parameters make perfect sense, and comparison with the
Mates parameters (Fig. 10a) reveals the distortions inflicted
on the latter by the (x, y) estimates in the impossible Mates
region, which forced α = β.

4.6 PCA analysis of the coordinate systems best describing
the empirical data

If we only go by the model predictions, the Michon, Hary
and Moore, and Schulze et al. models are all equivalent
because the two parameters that describe them can be lin-
early changed one to another. Yet, it is reasonable to assume
that if the two parameters reflect independent psychological
processes (phase and period correction in the Schulze et al.
case and phase resetting and internal timekeeper update in
the Hary and Moore case) then the two parameters would be
statistically uncorrelated.

A well-established method to find the best uncorrelated
mapping or best orthogonal coordinate system is Principal
Components Analysis or PCA (see Hastie et al. 2001). PCA
finds two orthogonal projections P1, P2 such that the vari-
ance of the data mapped by P1 is maximal and the variance of
the data mapped by P2 is maximal (subject to the constraint
that P2 is orthogonal to P1). The resulting coordinate system
P1(x, y), P2(x, y) is often considered as a good (canonical)
representation of the data.

We performed a PCA analysis on the (x, y) pairs for all
participants and trials and obtained the projection P1(x, y) =
−0.12x + 0.99y, P2(x, y) = 0.99x + 0.12y. As we can
clearly see, the coordinate system that maps (x, y) pairs to
independent components is similar to the XY coordinate sys-
tem (the angular difference is only about 7◦), and far from
the one of the Schulze et al. or Hary and Moore models.

We also calculated the correlation coefficient of the param-
eter estimates of the different models. As expected from the
PCA analysis, the correlation coefficient of the two variables

was small in the case of the Canonical XY model and the
Michon model (−0.02), but much larger and negative in the
cases of Hary and Moore (−0.66) and Schulze et al. (−0.73).
The largest correlation coefficient was obtained for the Mates
model (−0.80).

To conclude, the XY model is an elegant description of the
experimental data since its parameters are (almost) uncorre-
lated. However, the model suffers from the fact that it has no
direct psychological interpretation. The models of Hary and
Moore and Schulze et al. have parameters estimates that are
more correlated, but they lend themselves more readily to a
psychological interpretation.

5 Discussion

We began by presenting a linear framework in which the pre-
diction of the next inter-response interval is a linear function
of previous inter-stimulus intervals, inter-response intervals,
and recent asynchronies, and embedded four models from the
literature (Mates, Michon, Hary and Moore, Schulze et al.)
in it. We further suggested a Canonical XY model that is
also embedded in this framework. We then defined a notion
of equivalence, and showed that except for the Mates model,
all the models are equivalent. The Mates model made a stron-
ger prediction, one that could be tested experimentally.

Taking this as our departure point, we analyzed experi-
mental data, and saw that the Mates model prediction was
not validated for about a third of the trials. We also saw that
the Mates model prediction was not significantly better than
that of the Canonical XY model when the models were com-
pared using a “fair” training and testing scheme.

Appendix 2 further generalizes these results for models
including the original stochastic (and possibly correlated)
noise terms that we had omitted for simplicity. It presents
a method for computing an unbiased estimate of the model
parameters in the presence of correlated noise and also evalu-
ates the estimation error. The results of the Appendix further
support the conclusion that the Mates model assumptions are
too restrictive by showing that neither correlated noise nor
estimation error can explain the violation of the Mates model
by the empirical data.

The Mates model differs from the other models only
because of its assumption that period correction is based on
a comparison of stimulus and response intervals. Therefore,
our findings suggest that this specific assumption is incor-
rect, and that the alternative assumption of Schulze et al.
that period correction is based on perception of asynchronies
is to be preferred, even though it results in a model that is
equivalent to the Michon and Hary & Moore models.

The agreement of these three models may suggest that
all these researchers, perhaps without knowing it, were on
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the right path. However, these equivalent models also have
weaknesses:

(1) They are limited in their ability to predict results
when experimental conditions are changed. The model
parameters can be adjusted empirically to obtain a best
fit to the experimental data, but the models cannot pre-
dict effects of step size or of base tempo. Accounting
for such effects will require additional variables and
parameters.

(2) Although the models originate from very different intu-
itions, they produce equivalent empirical predictions.
This suggests that the intuitive or theory-based approach
to model building may not be the most efficient one, and
that a more systematic approach within a general lin-
ear framework, such as taken here, might lead to faster
progress. The Canonical XY model can easily be aug-
mented by adding variables from farther back in the
time series (see Eq. 5), and such expanded models may
be able to account for additional systematic variance in
the data.

However, the general linear framework is not a pana-
cea. Adding variables from farther back in the time series
can increase predictive power, but if the number of parame-
ters gets too large, the model will begin to explain noise in
the data. Moreover, such models still cannot account for the
just-mentioned effects of step size or base tempo. Prediction
of these effects needs to rely on findings from independent
empirical research on the functional relationships between
these variables and model parameters. Furthermore, while a
non-intuitive, purely statistical approach to modeling offers
great freedom, it has the drawback that the resulting mod-
els cannot easily be related back to theories about how the
human mind operates. Thus, they may contain parameters
that have no psychological interpretation or that are implau-
sible considering what is known about human perception and
memory. To prevent the modeling effort from being merely
an algebraic exercise, we need to remain in contact with psy-
chological theories and strive to interpret the parameters in a
meaningful way.

Finally, we need to acknowledge that linear models are
limited by their very linearity, and that nonlinear dynamic
models may offer an even more general and powerful
approach than even the most general linear model. Regimes
of linear control are often nested locally within a broader
nonlinear landscape (cf. Pressing 1999), and the approach
we have pursued here may be limited to experimental situa-
tions in which regularity is high, changes are small, and sen-
sorimotor coordination is simple. Future model comparisons
should therefore include not only expanded linear models
but also nonlinear models, and should assess their ability to

account for performance in coordination tasks that go beyond
simple one-to-one synchronization. (For a recent step in that
direction, see Loehr et al. 2011.)
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Appendix 1

Finding the best parameters for the Canonical XY model

In this section, we explain how to find the “best” parame-
ters—the parameters that minimize the squared prediction
error.

Let n be the total number of metronome beats in the exper-
iment.

Let A be the n − 2 by 2 matrix:

A(k, 1) = e(k + 1)(k = 1 . . . n − 2)

A(k, 2) = e(k)(k = 1 . . . n − 2) (58)

Let b, c, and d be the column vectors of length n − 2:

b(k) = r(k + 2)(k = 1 . . . n − 2)

c(k) = r(k + 1)(k = 1 . . . n − 2)

d(k) = r ′(k + 2)(k = 1 . . . n − 2) (59)

Let w be the column vector of length 2:

w(1) = x

w(2) = y (60)

Lemma

A ∗ w + c = d (61)

(“*” here stands for matrix multiplication).

Proof

A ∗ w + c = A(k, 1) ∗ x + A(k, 2) ∗ y + c(k)

= e(k + 1) ∗ x + e(k) ∗ y + r(k + 1)

= r ′(k + 2) = d(k)

(See Eq. 50)

Lemma The mean squared prediction error is
∣
∣
∣
∣A∗w+c−

b)
∣
∣
∣
∣2

/(n − 2), where ||x || is the Euclidean norm of the vector
||x ||.
Proof From the last lemma

||A ∗ w + c − b)||2
= ||d − b||2 =

∑

k=1...n−2

[
r ′(k + 2) − r(k + 2)

]2

=
∑

k=3...n

[
R′(k) − R(k)

]2
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We assume that the following initial conditions hold: R′(1) =
R(1) andR′(2) = R(2).

Therefore, given that w = (x, y), minimizing the mean
squared error means minimizing ||A ∗ (x, y) − (b − c)||2
over all the possible (x, y). This has the well-known least-
mean-square solution (see Rao and Toutenburg 1999):

(x, y)T = (ATA)−1AT(b − c), (62)

where AT is the transpose of A, and (ATA)−1 is the inverse of
(ATA). Equation (62) is a “closed” formula, one that enables
us to calculate the “best” (x, y) of the Canonical XY model
directly, without needing an iterative algorithm.

Closed formula for the best Mates model parameters

In this section we will obtain a “closed” formula for the best
Mates model coefficients, similar to Eq. 62 for the case of
the Canonical XY model. In order to find the best Mates
model coefficients, we start by finding the best (x, y) for
the Canonical XY model. If we are in the possible Mates
region, where y ≥ −x − (x2)/4, then the pair (x, y) can be
translated into a pair (α, β) of Mates parameters (see Eqs.
53, 54):

(α, β) =
{[

−x + sqrt (x2 + 4x + 4y)
]
/2,

[
−x − sqrt (x2 + 4x + 4y)

]
/2

}
(63)

If y < −x − (x2)/4, then we are in the impossible
Mates region. Now we need to find (x ′, y′) in the possi-
ble Mates region that minimize the mean squared error.
So the best Mates model parameters are the (x ′, y′) which
minimize

∣
∣
∣
∣A ∗ (x ′, y′)T − (b − c)

∣
∣
∣
∣2

subject to the con-
straint y′ >= −x ′ − (x ′2)/4. From the convexity of min-
imized norm (see Rockafellar 1970), we know that in this
case the optimal solution is obtained at the boundary of
the possible Mates and impossible Mates regions, where
y = −x − (x2)/4 or x + y + (x2)/4 = 0. Therefore,
(x ′, y′) is the solution to the following optimization prob-
lem:

Minimize f (x, y) such that g(x, y) = 0;

f (x, y) =
[
A ∗ (x, y)T − (b − c)

]T

×
[
A ∗ (x, y)T − (b − c)

]

g(x, y) = x + y + (x2)/4

This problem can be solved using the Lagrange multipliers
technique (see Rudin 1987). The solution is obtained when
∇ f = −λ∇g(and g = 0).

λ is the Lagrange multiplier, and ∇ is the gradient operator
∇ = (∂x1, ∂x2).

Now

∇ f = 2(A)T(A(x, y)T − (b − c)) (64)

∇g = (1 + x/2, 1)T (65)

Therefore

∇ f = −λ∇g → 2(ATA)(x, y)T − 2(AT(b − c))

= (−λ(1 + x/2),−λ)T

Now since A is an (n − 2) by 2 matrix, ATA is a 2 by 2
matrix. Let B be this matrix (B = ATA).

We denote by C the 2 by 1 vector C = AT (b − c).

Bi j =
∑

k=1..n−2

e(2 + k − i)e(2 + k − j) (66)

Ci =
∑

k=1..n−2

e(2 + k − i) [r(k + 2) − r(k + 1)] (67)

Now we can write ∇ f = −λ∇g →
2(B11x + B12 y − C1) = −λ(1 + x/2) (68)

2(B21x + B22 y − C2) = −λ

We can compute λ from the second equation, and by substi-
tuting it in the first equation we get

B11x + B12 y − C1 = (B21x + B22 y − C2)(1 + x/2) (69)

or

B11x + B12 y − C1 + (C2 − B21x − B22 y)(1 + x/2) = 0

(70)

Let us recall that y = −x − x2/4.
Substituting in the last equation leads us to a cubic equa-

tion that can be solved analytically or numerically

(B22/8)x3 + (−B12/4 − B21/2 + 3 B22/4)x2

+(−B12 − B21 + B11 + C2/2 + B22)x + C2 − C1 (71)

This equation has at least one real root. Thus we know that
a solution to the original problem exists. Let x be a real root
of this cubic equation; then (x, y) = (x,−x − x2/4) is a
solution to the original problem.

Note that in this way we can find the best (x, y) for the
Mates model directly without using an iterative algorithm.
Comparing the results by computer simulation, we obtained
the same (x, y) (up to numeric precision differences), but the
speed of the iterative algorithm was slower by a factor of
over 100.

Appendix 2

The purpose of this appendix is to deal with two issues that
were not considered so far:
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(a) The stochastic part of the linear models discussed, and
especially correlations in the noise terms appearing in
the non-deterministic versions of the models.

(b) The estimation error of the model parameters.

One of this article’s main findings is that the Mates model is
less successful than the Canonical XY model, since a sub-
stantial percentage of the estimated parameters are empiri-
cally found to be in the impossible Mates region, contrary to
the Mates model’s assumptions. Here we examine whether
either of two sources of error might have caused these param-
eter estimates (but not the “true” parameters) to be in the
impossible Mates region.

Another issue that remained unspecified until now is the
exact link between intensive and extensive variables, and the
stochastic structure of the residual noise Z(k) of Eq. 5.

The residual noise term Z(k) reflects the difference
between the intensive variable r ′(k) and the extensive vari-
able r(k) [in Eq. 5 r ′(k + 1) = r(k + 1) − Z(k + 1)].

In the section “Calculation of Z(k) in the case of the
Schulze et al. model” of this appendix, we will show the spe-
cific correlation structure implied by the Schulze et al. model.
Similar correlation structures can be found in all other mod-
els, and a general algorithm to find model parameters with
Gaussian and possibly correlated Z(k) is presented in the
section “The bGLS method” of this appendix.13

In order to deal with the concern discussed above, we
therefore present a variant of a well-known method (general-
ized least squares, GLS) that provides an unbiased estimate
of the model parameters, even in the presence of correlated
noise. This method is much simpler than the estimation meth-
ods used by previous authors (Pressing 1998a,b; Repp and
Keller 2008; Vorberg and Schulze 2002), yet we prove that it
indeed provides an unbiased estimate of the model parame-
ters. As we will see, the method will also provide us with an
estimate of the covariance of the estimation error. Based on
this, we can calculate the probability that the estimation error
caused the parameters to fall inside the impossible Mates
region.

The bGLS method14

Until now we ignored the stochastic part of the four models
discussed.

13 Note that the process of presenting an ARMA model with inten-
sive parameters (“state-space model”) as an equivalent model with only
extensive parameters is well established in the literature (see Ljung
1987).
14 The method is also described briefly in another recent paper (Repp
et al. 2012).

All four models can be written as

r(k + 1) = x ∗ e(k) + y ∗ e(k − 1) + r(k) + Z(k + 1)

(72)

where Z(k + 1) is a Gaussian random variable with short
autocorrelation structure:

γz( j) = 0 for j ≥ K (73)

where γz( j) is the autocorrelation function: γz( j) =
cov [Z(k), Z(k + j)], and K is some small integer (1, 2,
or 3).

The key difference between Eqs. 72 and 50 is that we have
replaced r ′(k) with r(k). We now demonstrate how to find
the parameters (x, y) without making this substitution.

We recall that r ′(k) = r(k)− Z(k), and following Appen-
dix 1 Eq. 61 we can write Eq. 72 as

A ∗ w + Z = B (74)

where A is the matrix A of Appendix 1, B is a column vector:
B(k) = r(k + 2)−r(k + 1), and Z(k) is the prediction error
vector: Z = [Z(3), Z(4), . . . Z(n)]T. Note that in computing
A (eq. 58) we replace e(k) by e(k)– mean(e) and e(k + 1)

by e(k + 1)– mean(e), where mean(e) is the empirical mean
of the asynchrony. In this way we can assume without loss
of generality that Z has zero mean.

Assuming that Z is Gaussian with covariance matrix �,
the likelihood of Z given A, B, and w is

Prob(Z = B − Aw|B, A,�, w) =
(1/(2π)N/2)(|�|)−1/2exp(−(1/2)

(B − Aw)T(�)−1(B − Aw))

(75)

If Z(3), Z(4), . . . Z(n) are i.i.d. and Gaussian with zero mean
(� is diagonal), then the linear regression of the parameters,
as described in Appendix 1 (Eq. 62), that minimizes the mean
squared error also maximizes the likelihood of Eq. 75, and
therefore provides an unbiased estimate of the model param-
eters. This is a well-known result (see Rao and Toutenburg
1999). However, we need to consider that Z(k) might not be
i.i.d.

In case Z is correlated and has a known covariance matrix
�, then an unbiased estimate of the model parameters is also
given by the maximal likelihood estimator and is called GLS
(see Aitken 1935):

(x, y)T = wT = (AT�−1A)−1(AT�−1)B (76)

In our case, the covariance matrix is unknown but has a spe-
cial form:

� = γz(0)I + γz(1)
[
�1 + �−1] + γz(2)

[
�2 + �−2] + · · · γz(K − 1)

[�K−1 + �−(K−1)] (77)
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where I is the identity matrix, �k is a matrix with 1 on the
kth diagonal, and γz(k) is the autocorrelation function of Z :
γz(k) = cov(Z(n), Z(n + k)), where γz( j) = 0 for j ≥ K .

Since in our case γz(k) are not known, an iterative algo-
rithm can be applied, called sometimes Feasible Generalized
Least Squares (see Ljung 1987). In each iteration, � is esti-
mated by calculating the empirical autocovariance function
of the residual noise. Later, using the final estimate of �, an
estimate of alpha is computed based on Eq. 76.

We applied this algorithm and compared the results with
the ones obtained by simple linear regression. Numerical
stability is improved if we “bound” the parameter covari-
ance. This leads to a variant of the GLS method that we call
“bounded GLS method.” Vorberg and Schulze (2002) men-
tioned that the parameter estimates may suffer from “inter-
dependence,” a reduced numerical stability of the estimate,
and this actually relates to the lower bound on an unbiased
estimator (Cramér–Rao bound see Kay 1993). To resolve this
issue, Vorberg and Schulze suggested placing some restric-
tion on the parameter range. Following this suggestion, in
each iteration we apply certain constraints on the covariance
matrix by adjusting the moments. Note that we also assume
that all large autocovariances vanish (γz( j) = 0 for j ≥ K ).

Algorithm (bounded generalized least squares method)

The input of this algorithm is the matrices A and B, and a
certain constraint on the autocovariance matrix15. The output
of the algorithm is the estimate for the parameters: xbGLS,
ybGLS.

a. Start by setting �1 = I (the identity matrix).
b. Iterate the following steps until a stop criterion is

obtained16.

(i) Compute an estimate: (xn, yn)T = (AT�−1
n A)−1

(AT�−1
n )B.

(ii) Compute the residual noise Dn = B−A(xn, yn)T .
(iii) Estimate γ n+1(0), γ n+1(1), . . . , γ n+1(K − 1)

by the autocovariance of the residual noise:

γ n+1( j) = γDn ( j).

(iv) For all j < K adjust γ n+1( j) by increasing or
decreasing it so that it meets the constraints.

15 In this paper we used −5/8 < γz(1)/γz(0) < −1/2 and 0 <

γz(2)/γz(0) < 1/8. We will soon explain why these specific constraints
were selected.
16 In this paper, we used a fixed number of 20 iterations and among all
solutions we took the one that maximized the likelihood (1/(2π)N/2)

(|�|)−1/2 exp (−(1/2)(B − Aw)T (�)−1(B − Aw)) and yielded (x, y)
estimates in the “reasonable range” −0.8 < x < −2.3 and 0.5 < y <

2.8.

(v) Compute �n+1 = γ n+1(0)I + γ n+1(1)
[
�1 +

�−1
]+γ n+1(2)

[
�2 + �−2

]+· · · γ n+1(K − 1)[
�K−1 + �−(K−1)

]
.

Calculation of Z(k) in the case of the Schulze et al. model

We will show an implicit formula for Z(k) in the case of
the Schulze et al. model, though similar formulae could be
obtained also for the other models. A full discussion of cor-
relation structure in different models is outside the scope of
this paper, but the following calculation supports our claim
that the main results of this paper hold in the presence of
correlated noise.

Note that from the original paper of Schulze et al. (2005),
Eq. (1) (p. 463) can be written as

e(k) = (1 − α)e(k − 1) + tI(k) − s(k) + T (k)

+M(k) − M(k − 1) (78)

or

r(k) = tI(k) − α ∗ e(k − 1) + T (k) + M(k) − M(k − 1)

(79)

where T (k), M(k), and M(k−1) are Gaussian noises reflect-
ing the motor and internal time keeper noises, and tI (k) is τk

of Schultze et al. (the mean of the noise term). The standard
deviations of T and M are (α, β), respectively.

So instead of our Eq. 41

r ′(k + 1) = tI(k + 1) − α ∗ e(k), (80)

we can write

r(k + 1) = tI(k + 1) − α ∗ e(k) + h(k) (81)

where

h(k) = T (k) + M(k) − M(k − 1). (82)

Note that repeating the calculations in Eqs. 42–47 without
“replacing” r ′(k) and r(k) yields:

r(k + 1) = tI(k + 1) − α ∗ e(k) + h(k) (83)

tI(k) = tI(k − 1) − β ∗ e(k − 1), (84)

and then

r(k) = tI(k) − α ∗ e(k − 1) + h(k − 1) (85)

tI(k) = r(k) + α ∗ e(k − 1) − h(k − 1) (86)

tI(k + 1) = tI(k) − β ∗ e(k). (87)

Therefore

r(k + 1) = r(k) + α ∗ e(k − 1) − h(k − 1)

−β ∗ e(k) − α ∗ e(k) + h(k) → (88)

r(k + 1) = (−α − β) ∗ e(k) + α ∗ e(k − 1) + r(k)

+h(k) − h(k − 1). (89)
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Compare that with Eq. 47: r(k + 1) = (−α − β) ∗ e(k) +
α ∗ e(k − 1).

The difference is in the new noise term:

z(k) = h(k) − h(k − 1) = T (k) − T (k − 1)

+M(k) − 2M(k − 1) + M(k − 2). (90)

Interestingly, this term is in general a Gaussian noise with
three non-trivial autocovariances (and not two like in the
Vorberg and Schulze 2002 model) since:

γz(0) = Var(z(k)) = Cov(z(k), z(k)) = 2σ 2
T + 6σ 2

M (91)

γz(1) = Cov(z(k), z(k + 1)) = −σ 2
T − 4σ 2

M (92)

γz(2) = Cov(z(k), z(k + 2)) = σ 2
M (93)

γz(k) = 0 for k > 2. (94)

Now we need to see that we can estimate the model param-
eters

r(k + 1) = (−α − β) ∗ e(k) + α ∗ e(k − 1) + r(k) + z(k)

(95)

or

r(k + 1) = (−α − β) ∗ e(k) + α ∗ e(k − 1) + r(k)

+T (k) − T (k − 1) + M(k) − 2M(k − 1)

+M(k − 2). (96)

Algorithm 1 described here provides the solution known as
Feasible Least Squares or GLS, dating back to Aitken (1935).
To get improved numerical stability, we need to specify
restrictions on the covariance matrix. A reasonable assump-
tion that has often been used in the literature (see for example
Repp and Keller 2008) is to assume

σ 2
T > σ 2

M > 0. (97)

This results in −5/8 < γh(1)/γh(0) < −1/2 and 0 <

γh(2)/γh(0) < 1/8 (since σ 2
M is positive), which limits

the amount of correlation possible within this model and
decreases the estimation variance. We created a simulation
with x = −1.8, y = 1.6, σ 2

T = 49, σ 2
M = 25 using Eqs.

95–96 and a typical stimulus of our experiment. (The two
alternating intervals were 465 and 535 ms.) For each simu-
lated trial, we ran algorithm 1 to find the bGLS estimates. The
mean estimates of 1,000 of those simulations were −1.79 and
1.58 for the x and y parameters, respectively (compare with
the true results x = −1.80, y = 1.60) with standard devi-
ations of 0.18 and 0.21. This shows that the algorithm does
provide an unbiased estimate of the model parameters, and
the estimation error for a single trial is relatively small.

With this method we can estimate the estimation error
magnitude of x and y for every trial i , namely σ i

x , σ
i
y .

Validation of the main result of this article

One of the main results of this paper was that a significant
number of trials fell outside the possible Mates region. Since
until Appendix 2 we did not take into account correlated
noise, it is theoretically possible that in the presence of cor-
related estimation error all the trials will be inside the possible
region. However, computations based on Algorithm 1 show
that this is not the case.

Indeed, 62 % of the trials (112 of 180) were outside the
possible Mates region when parameters were estimated using
the bGLS method. Compare that with 32.7 % (59 of 180)
without the bGLS method.

Another concern was that the model parameters are actu-
ally inside the possible Mates region, but only seem to fall
outside the possible region because of estimation error. In
order to show that this claim is not likely to be true, we used
the estimates of the standard deviation of the estimation error
obtained earlier in this appendix (σ i

x , σ
i
y).

Specifically, for each estimated parameter we ran 100 sim-
ulations using the parameters and Eqs. 95–96, and σ 2

T =
49, σ 2

M = 25. Then we calculated for each of the simulated
trials the bGLS estimate and computed the estimated stan-
dard deviation of (σ i

x , σ
i
y). Based on this, we estimated the

probability that all points were actually in the possible region
but were found in the impossible region because of estima-
tion error. This probability turned out to be extremely small
(p < 1e−5), supporting one of the main claims of this paper.

Computing the probability that estimates are outside the
possible region only because of estimation error

We now estimate the probability that estimation error caused
our data to fall outside the possible Mates region. We assume
the following:

An observed data point (xi , yi ) represents a “true” point
(x0

i , y0
i ) plus noise: (xi , yi ) = (x0

i , y0
i ) + (ni

x , ni
y). We

assume that (ni
x , ni

y) is Gaussian with mean 0 (an unbiased
estimate!) and standard deviation (σ i

x , σ
i
y) (the estimation

error estimated by simulations, as explained before). Now
let H1 be the hypothesis that all (x0

i , y0
i ) are in the possible

Mates region, and let H0 be the hypothesis that (x0
i , y0

i ) can
be anywhere. In order to compute this probability, we need a
further Bayesian assumption on the prior of the distribution
of (x0

i , y0
i ). We will assume that (x0

i , y0
i ) are Gaussian with

mean μG and covariance �G identical to the grand average
across all participants and trials.

Applying the Bayesian argumentation:

P(H1|(x1, y1), (x2, y2), . . . , (xn, yn)) =
P((x1, y1), (x2, y2), . . . , (xn, yn)|H1)P(H1)/

[P((x1, y1), (x2, y2), . . . , (xn, yn)|H1)P(H1)
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+P((x1, y1), (x2, y2), . . . , (xn, yn)|H0)P(H0)] . (98)

From independence of ni
x :

P((x1, y1), (x2, y2), . . . , (xn, yn)|H1)

= 
i

∫

p((ni
x , ni

y)|H1)P((x0
i , y0

i )|H1)dx0
i dy0

i (99)

P(H1|(x1, y1), (x2, y2), . . . , (xn, yn)) = 1/(1 + L), (100)

where L is the likelihood ratio

L = 
i

∫

p((ni
x , ni

y)|H0)P((x0
i , y0

i )|H0)dx0
i dy0

i /


i

∫

p((ni
x , ni

y)|H1)P((x0
i , y0

i )|H1)dx0
i dy0

i (101)

Since (ni
x , ni

y) are Gaussian with mean 0 and covariances
σ i

x , σ
i
y and (x0

i , y0
i ) ∼ N (μG,�G) the log likelihood can be

easily computed.
The Matlab script written to estimate the probability com-

puted a probability smaller than 1e−5, allowing us to reject
the hypothesis that all true parameters were in the possi-
ble region of the Mates model. In other words, it is highly
improbable that our parameter estimates in the impossible
Mates region were due to estimation error alone. To con-
clude, our main findings concerning the Mates model hold
also when correlated noise terms and estimation errors are
considered.
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