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Abstract

We present new tools for categorizing chords based on corpus
data, applicable to a variety of representations from Roman
numerals to MIDI notes. Using methods from information the-
ory, we propose that harmonic theories should be evaluated by
at least two criteria, accuracy (how well the theory describes
the musical surface) and complexity (the efficiency of the the-
ory according to Occam’s razor). We use our methods to con-
sider a range of approaches in music theory, including function
theory, root functionality, and the figured-bass tradition. Using
new corpus data as well as eleven datasets from five published
works, we argue that our framework produces results consis-
tent both with musical intuition and previous work, primarily
by recovering the tonic/subdominant/dominant categorization
central to traditional music theory. By showing that functional
harmony can be analysed as a clustering problem, we link
machine learning, information theory, corpus analysis and
music theory.

Keywords: functional harmony, corpus analysis, cluster
analysis, information theory, information bottleneck

1. Introducing the framework

1.1 Introduction

Western harmony has a complex structure characterized by a
large number of building blocks (chords) and a larger number
of ways to combine them (chord progressions). This
complexity is an expressive boon for composers, but a
methodological challenge for theorists and pedagogues. For
example, since figured-bass theory uses at least 49 separate

Correspondence: Nori Jacoby, Hebrew University of Jerusalem, The Edmond & Lily Safra Center for Brain Sciences, Edmond J. Safra Campus,
Givat Ram, Jerusalem, 91904 Israel. E-mail: jacoby@mit.edu

chord symbols (seven bass notes plus three triadic and four
seventh-chord figures, with additional categories for
nondiatonic and nonharmonic configurations) figured-based
treatises typically contain long lists of prohibitions, desider-
ata, and intermediate cases (e.g. Gasparini, 1715; Heinichen,
1728; Niedt, 1706; Praetorius, 1615).

One of music theory’s central concerns is describing this
structure in an approximate and simplified way. The com-
mon denominator among various approaches is the attempt
to identify concise principles (such as Schenker’s Ursatz (see
Schenker, 1979); or the concept of Tonnetz (see Cohn, 1998))
that can structure the understanding of harmony. However,
there is little agreement about specifics and arguments have
raged since C.P.E Bach’s caustic dismissal of Rameau
(Kirenberg, 1774).

While contemporary music theory often associates music
with relatively complex objects such as trees (Lerdahl &
Jackendoff, 1983), graphs (Schenker, 1925) or orbifolds
(Tymoczko, 2006), we will restrict our attention here to the
simpler problem of categorizing chords. Given a large corpus
of music fully annotated with a particular system of chord
representation (surface tokens), our approach evaluates their
possible groupings or clusters into a more coarse-grained set
of categories. Surface tokens can consist of Roman numerals
(Temperley, 2009; Tymoczko, 2003), scale degrees
(De Clercq & Temperley, 2011; Huron, 2006) or simultane-
ous MIDI sonorities (Quinn & Mavromatis, 2011; Rohrmeier,
2005). We take these pre-existing representations as our
starting point, without attempting to privilege any particular
vocabulary. Though we will mainly be concerned with gen-
eralizing the concept of ‘functional harmony’, our approach
is flexible enough to model theoretical concepts such as root
motion, scale degrees, or the distinction between passing and
stable chords.

© 2015 Taylor & Francis
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2 N. Jacoby et al.

Formally:

Definition 1. Deterministic categorization scheme. Let C
be a list of surface tokens. Let C1, . . . , CN be a large corpus
of music annotated with the symbols of C. A deterministic
categorization scheme (or a ‘theory’) is a mapping from C to
a list of categories F:

F : C → F
The set of all surface token that maps to a single category is
often called a cluster.

Table 1 provides some examples of analysed corpora satis-
fying this definition.

Our main focus lies in developing a technique for evaluating
various categorization schemes. We will always evaluate cat-
egories relative to an elementary representation; for example,
we can compare theories A and B, or C and D in Table 1,
but we cannot compare theories C and F, even though they
describe the same music, as they relate to different elementary
representations (surface tokens).

1.2 Criteria for theories

The ability of a theory to describe a musical surface must be
testable. Therefore, accuracy is a crucial criterion in the eval-
uation of classification schemes. Of course, quantifying accu-
racy is non-trivial, because different theories can be
accurate in different ways, and evaluating the match between
theory and musical practice is itself theory-dependent, which
raises the risk of a circular argument. In the context of our
Definition 1, accuracy can be measured as the degree to which
a coarse-grained categorization scheme represents a more ref-
ined surface structure (the surface tokens).

Our claim, however, is that accuracy is insufficient on its
own: two theories might be equally accurate, but one theory
could be simpler and thus preferable according to
Occam’s razor. For example, a strict scale-degree theory cat-
egorizes chords into seven categories, one for each diatonic
tone, whereas the functional categorization into Tonic, Sub-
dominant and Dominant (TSD) groups chords into just three
categories. The key question is how to balance the increased
accuracy of a seven-category system against its increased
complexity.

In recent years, corpus analysis has been used in music
scholarship to evaluate the real-world application of theo-
retical concepts (for a review see Temperley & VanHandel
(2013)). Using statistical measures, one can empirically test
how well a given theoretical concept describes a large body
of digitally annotated scores. For example, Temperley (2009)
showed that some root motions are more common than others
in a corpus of harmony textbooks, a statistical relation that is
predicted according to some theories (Meeùs, 2000; Sadai,
Davis, & Shlesinger, 1980; Schoenberg, 1969). Tymoczko
(2011) used a corpus of Bach chorales to determine which
harmonic theory best described a given repertoire. Neverthe-
less, a fully developed methodology to evaluate the accuracy

of functional categories has not yet been proposed (for efforts
in this direction see Tymoczko (2003, 2011)).

Inspired by well-established methods in machine learning
and information theory, we will provide quantifiable measures
for these two important properties. One possibility that we will
explore is defining accuracy by the amount of information lost
in predicting neighbouring tokens when replacing a token with
a category label and complexity as the amount of information
required to code chords with category labels (Sections 1.6
and 1.7). We then show that these measures correlate with
common musical intuitions and can contribute new answers
to musically relevant questions (for example, to what extent
can we apply nineteenth-century music theories to the analysis
of music from earlier periods). We propose a method of com-
paring these different theories by introducing the ‘evaluation
plane’, a mathematical framework graphically representing
the accuracy and complexity of possible theories. Using this
purely data-driven methodology, we then derive a class of
‘optimal’ theories, which reflect a continuum of optimal trade-
offs between accuracy and complexity. This optimal class
can serve as a baseline for comparing pre-existing harmonic
categorization schemes.

1.3 Conceptual framework

Figure 1 shows a graph in which every theory is evaluated
based on complexity and accuracy. We assume for now that
both criteria are quantifiable by real positive numbers, with
larger numbers reflecting higher complexity or accuracy.
Every theory can then be mapped on a two-dimensional plane,
where the complexity is the x-axis and accuracy the y-axis.
Since two theories can have the same degree of complexity
but differing degrees of accuracy, we should always prefer the
more accurate theory (for example, we should prefer theory
FB to FC in Figure 1). Conversely, given the same degree
of accuracy, we should prefer a more parsimonious theory
that reduces the amount of complexity (for example, theory
FB is preferable to theory FD in Figure 1). This conceptual
framework can also shed light on more ambiguous cases: if
two theories have different accuracy and complexity mea-
sures, preferring one or the other depends on the evaluator’s
preferences regarding the trade-off between the two properties
(theories FA and FE in Figure 1).

Furthermore there is a privileged class of theories among
all possible theories: those that for a given level of complexity
provide the maximal accuracy.This class of theories is indexed
by the optimal complexity–accuracy curve, which indicates
the maximal achievable accuracy for each complexity (see
the black curve in Figure 1). A theory lies on the optimal
curve if any other theory with the same or less complexity is
less accurate; this means that there are no theories positioned
above the optimal black curve in Figure 1. Note that this
optimal class is not a single theory, but rather a continuum of
possible theories characterized by their complexity. This curve
is extremely difficult to calculate using brute-force methods,
since it requires scanning an exponentially large number of
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An Information Theoretic Approach to Chord Categorization and Functional Harmony 3

Table 1. Examples of corpora, surface tokens and theories according to Definition 1. Our formalism works with musical styles from classical to
popular, and with different types of surface tokens, ranging from hand-made Roman analysis to unanalysed MIDI sonorities.

Corpus Surface tokens Name of theory Clusters

A Major-mode
Bach chorales

7 Diatonic scale degrees:
I,ii,iii,IV,V,vi,viio

TSD: Tonic Subdomi-
nant Dominant

T: I,vi,iii S: ii,IV D: V,viio

B Major-mode
Bach chorales

7 Diatonic scale degrees:
I,ii,iii,IV,V,vi,viio

Mmd: Categorization
according to quality
(Major, Minor
diminished)

M: I,IV,V m: ii,ii,vi d: viio

C Major-mode
Bach chorales

40 Most common Roman
numerals

Strict Root 1: I, I6, I6/4
2: ii6/5, ii,ii7, ii6, ii2, ii4/3, ii6/4
3: iii, iii6, iii7, iii6/4, iii6/5,
iii4/3
4: IV, IV6, IV6/4
5: V, V7,V6, V6/5, V2, V4/3,
V6/4
6: vi, vi6, vi7, vi6/4, vi6/5, vi2,
vi4/3
7: viio6, viiø7, viio, viiø4/3,
viio6/4,viiø6/5,viiø2

D Major-mode
Bach chorales.

40 Most common Roman
numerals

Strict Bass 1: I, ii2, IV6/4, vi6, vi6/5
2: ii, ii7, V4/3, V6/4, viio6,
viiø6/5
3: iii,I6, iii7, vi6/4, vi4/3
4: IV, V2,ii6, ii6/5, viiø4/3,
viio6/4
5: V, V7,I6/4, iii6, iii6/5, vi2

6: vi, vi7,IV6,ii6/4, ii4/3, viiø2

7: viio, viiø7,V6, V6/5,iii6/4,
iii4/3

E 100 Rock songs
From De Clerq
and Temperley
(2011)

12 Scale degrees (no
inversion): I,bII,II,bIII,III,
IV,#IV,V,bVI,VI, bVII,VII

Diatonic and non Dia-
tonic chords

Diatonic: I,II,III,IV,V,VI,VII
Non-diatonic:bI,bII,#IV,bVI,
bVII

F Major-mode
Bach chorales

16 most common simul-
taneous transposed pitch
classes extracted from
MIDI renditions of Bach
chorales (see Rohrmeier &
Cross 2008)

Type of chord (Triads,
seventh-chords,
non-tertian).

Triads: CEG, GBD,AFD, DFA,
DF#A, EGB, EG#B, BDF,
AC#E
7th chords: GBDF, DF#AC,
DFAC, ACEG
Non-tertian: CDG

Fig. 1. The conceptual framework: the evaluation plane and the
optimal curve.

possible theories. However, we will provide algorithms for
solving this problem in a variety of different contexts, drawing
on the work of Tishby, Pereira and Bialek (1999).

1.4 Concrete musical example

Let us give a concrete musical example:
Consider the following sequence of inversion-free Roman

numerals:

I → IV → i i → vi io → V → vi → I → V → I (1)

An assignment of categories in our formalism maps each
surface token to a set of categories (other symbols), as in the
following mapping to the set {T, S, D} (Tonic/Subdominant/
Dominant):

FT SD(I ) = FT SD(i i i) = FT SD(vi) = T;
FT SD(i i) = FT SD(IV ) = S;
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4 N. Jacoby et al.

FT SD(V ) = FT SD(vi io) = D (2)

This categorization scheme maps our Roman numeral se-
quence to the following sequence of symbols

T → S → S → D → D → T → T → D → T (3)

thus implementing a version of standard North-American func-
tion theory, as for example articulated by Kostka and Payne
(1984). This categorization scheme is illustrated in figure 2.

It is illustrative to contrast this theory with a toy theory
that categorizes harmonies according to their intrinsic quality,
minor, major and diminished (or {M, m, d}).

FMmd(I ) = FMmd(IV ) = FMmd(V ) = M;
FMmd(i i) = FMmd(vi) = FMmd(i i i) = m;
FMmd(vi io) = d (4)

The sequence in Example 4 therefore maps to:

M → M → m → d → M → m → M → M → M (5)

Clearly, Examples 3 and 5 provide different information about
the original sequence. While the two assignments use three
symbols each, we might intuitively feel that Example 5 con-
tains less information regarding the original musical content
of Example 3. As we show later, this is indeed the case.

1.5 Graded or ‘fuzzy’ membership

Definition 1 requires that each surface token be associated
with exactly one category. We can relax this requirement by
allowing a single surface token to belong to more than one cat-
egory in a fuzzy or ‘graded’way (Figure 2; Agmon, 1995). To
understand how this could be done, consider that the mappings
of Equation 2 can also be written in probabilistic notation:

FT SD T S D
I 1 0 0
i i 0 1 0
i i i 1 0 0
IV 0 1 0
V 0 0 1
vi 1 0 0
vi io 0 0 1

(6)

Each entry in the table represents the weight of a Roman
numeral’s membership in the appropriate category. For exam-
ple: p(FT SD = T |C = I ) = 1, which says that chord (token)
I is mapped to category T (Tonic function) with a weight of
100%; or p(FT SD = D|C = IV ) = 0, which says that IV
does not belong to D at all. The advantage of this notation
is that it permits nondeterministic mappings whereby a single
chord, such as iii, can belong to multiple functional categories
with arbitrary weights. We can thus write any functional map-
ping, deterministic or not, as a matrix p(F = f |C = c),
where c ranges over our surface tokens and f ranges over all
possible functions.

Fig. 2. Categorization schemes. FT SD uses the standard categories
tonic, subdominant and dominant while FMmd categorizes according
to triad quality. Fsof t-T SD offers a more sophisticated version of
function theory where chords can map to multiple functions.

For example, consider the following probabilistic ‘soft’
clustering:

Fsof t-T SD T S D
I 1 0 0
i i 0 1 0
i i i 0.5 0 0.5
IV 0 1 0
V 0 0 1
vi 0.5 0.5 0
vi io 0 0 1

(7)

Here the iii token (chord) is represented as being 50% tonic
and 50% dominant, while the vi chord is 50% tonic and 50%
subdominant. This is consistent with the familiar idea that
I, IV and V are prototypes of the Tonic and Subdominant and
Dominant categories, and that the other chords (i i, i i i, vi) are
more loosely associated with one or more categories
(Agmon, 1995)1. This leads to the following generalization of
Definition 1:

Definition 2. Probabilistic categorization scheme. Let C be
a list of surface tokens. Let C1, . . . , CN be a large corpus
of music annotated with the symbols of C. A probabilistic
categorization scheme on a set of labels F (which we term
a ‘theory’) is a random variable F defined by the conditional
probabilities p(F = f |C = c) where f ∈ F and c ∈ C.

1Note that the important idea of graded or ‘fuzzy’ membership
of chords in functional categories (Agmon, 1995) is formalized
here by using the language of probabilities and random variables.
While this is not the only approach, there is a long tradition of
using this particular formalism for this purpose in the machine-
learning community (Hastie, Tibshirani, Friedman, & Franklin,
2005) and music (Temperley, 2007). The problem of finding such
categorizations is often described in the machine-learning literature
as ‘distributional clustering’ (Pereira, Tishby, & Lee, 1993). As we
will see, this definition will be instrumental for the rest of the theory
developed here.
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An Information Theoretic Approach to Chord Categorization and Functional Harmony 5

1.6 Quantifying complexity

Complexity, as its name suggests, is related to the number of
categories we use; indeed, an intuitive definition of complexity
is given by the number of categories in our theory. However, in
some cases we might want to distinguish between frequent and
very infrequent categories: for example, if a category appears
only extremely rarely in the totality of all our data (say once
in a million tokens) we might want to say that our theory
is roughly as complex as a theory in which that category is
simply not used.

To account for rare tokens, entropy is often used; for equally
likely categories, this quantity is simply the logarithm of the
number of categories. However, when categories are not equally
likely, rare categories contribute less than common categories
(for further applications of entropy in music see Temperley
(2007)).

H(F) = −
∑
f ∈F

p(F = f ) log2 p(F = f ). (8)

Note that this measure of complexity is data relative and
cannot be inferred simply from the theory itself.

For technical reasons, it is sometimes useful to consider
mutual information, a quantity that is closely related to ent-
ropy and is central to information theory (Shannon, 2001).
Formally, mutual information I (F; C) is defined as:

I (F; C) = H(F) − H(F |C), (9)

where

H(F |C) = −
∑
c∈C

p(C = c)

×
⎛
⎝∑

f ∈F
p(F = f |C = c) log2 p(F = f |C = c)

⎞
⎠ . (10)

Mutual information is simply the entropy minus a term that
that is due to the fuzziness of the classification scheme,
H(F |C). In the case of deterministic mapping H(F |C) = 0
and then entropy and mutual information are identical. Mut-
ual information is measured in bits and captures the amount
of relevant information that our functional categories retain
from the original scheme. Mutual information is symmetric
I (F; C) = I (C; F) and non-negative I (F; C) ≥ 0 (Cover
& Thomas, 2012).

Table 2 lists our three options for defining complexity:
counting symbols, simple entropy and mutual information.
Note the more compact formula for mutual information in
Table 2, case C which can be easily derived from Equations
8–10. This definition requires knowledge of the marginal dis-
tribution of the surface chords p (C = c), which can be com-
puted from the empirical histogram of chords in the corpus.

All three measures in Table 2 are non-negative, and there-
fore comply with the requirements discussed in Section 1.3.
Since mutual information is well known and easy to work

with2, we will favour it – though we also use the two other
alternatives (which often produce similar results).

Note that Mavromatis (2009, 2012) introduced complexity
to the music community through the concept of minimum
description length as a metric for estimating the number of
clusters in a Hidden Markov Model (HMM). In Section 2.6
we compare our method to the HMM approach.

1.7 Quantifying accuracy

There are multiple methods and for defining accuracy. In
principle we could apply the formalism in Figure 1 to a wide
class of accuracy metrics. However, in this paper, we mostly
associate accuracy with prediction – that is, our ability to
infer something about the musical stimulus based only on
functional information. The thought here is that functional
labels are often used to specify grammatical rules or statistical
tendencies: if we know that the current chord in a classical
piece is a dominant, say, then we have a pretty good idea
that the next chord will be a tonic. Note that in later parts of
the work we will compare the predictive approach to other
alternatives (Sections 2.5 and 2.6).

Let us illustrate the approach by recalling Example 1:

I → IV → i i → vi io → V → vi → I → V → I (11)

Assume that we replace one surface token (the second V)
with the category label associated by FT SD in Example 3; the
new sequence is:

I → IV → i i → vi io → D → vi → I → V → I (12)

We might try to measure accuracy by measuring the amount
of information lost by this replacement. Formally, let X be the
current token Cn, let F be the current category Fn and let Y be
the random variable associated with the context or ‘all other
tokens’ (see also Figure 3):

Y = (C1, C2, . . . , Cn−1, Cn+1, Cn+2, . . .) (13)

and:

X ≡ Cn, (14)

F ≡ Fn . (15)

Accuracy would then correspond to the mutual information
between F and Y :

I (F; Y ) = H(Y ) − H(Y |F). (16)

If F is a one-to-one mapping (where each symbol is mapped
to itself, and there is no reduction), the mutual information
attains the maximal value, or I (F; Y ) = I (X; Y ). If F maps
all surface tokens into one symbol (all information is lost)
the mutual information attains the minimal value I (F; Y ) =
0. All other mappings of surface tokens to categories (as in

2As we develop our formalization, we will notice further advantages
of using mutual information. For example, this choice significantly
simplifies some of the algorithmic steps.
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6 N. Jacoby et al.

Table 2. Three possible definitions of complexity (IC (F)).

Name of complexity measure Symbol Formal Definition

A Number of labels IC (F) = |F | Number of symbols in F
B Entropy IC (F) = H(F) H(F) = −∑

f ∈F p(F = f ) log2 p(F = f )

C Mutual information IC (F) = I (F; C) (I (F; C) = H(F) − H(F |C) = H(C) − H(C |F)

= ∑
f ∈F ,c=C p(F = f |C = c)P(C = c) log2

p(F= f |C=c)
p(F= f )

Fig. 3. Accuracy as mutual information between the current category
and all other surface tokens I (F; Y ).

Definition 2) would have intermediate I (F; Y ) values (Cover
& Thomas, 2012).

In practice, however, Y = (C1, C2, . . . , Cn−1, Cn+1,

Cn+2, . . .) is a very high-dimensional vector, making it impos-
sible to compute the mutual information I (F; Y ) directly. For
this reason further approximations are needed. One approach
is to consider only those chords in temporal proximity to
the current chord Cn , since they can be expected to exert
greater influence on the music. In this case, we replace Y
with Y ′ representing the local context of the current chord
(X = Cn). The validity and extent of this assumption is an
important question on its own, which we further explore after
we fully develop our formalism (see Section 2.5). Note that
these definitions generate one number Ia (F), which estimates
the average accuracy over all possible chords.

Table 3 presents some possible definitions of local context.
Figures 4 and 5 describe these alternatives graphically.

In Figure 4(a) we consider a local context to be the next
chord. (This captures one traditional motivation for function
theory, namely specifying first-order grammatical tendencies
or rules.) For example, if Y ′ = Yn+1 we effectively evaluate
the mutual information based on the distribution of chords
bigrams and ignore all higher order structures. Table 4(a), (d)
and (e) model the assumption that Cn is a first, second and third
order Markov chain, respectively (see Tishby et al., 1999).

Figure 4(b) represents a local context as the previous token.
We can also consider the local context as containing the next
token and the previous token (Figure 4(c)), the next two tokens
(Figure 4(d)) or the next three tokens (Figure 5(e)). Indeed,
there are analogous definitions for any choice of local context
Y ′. Note, however, that the number of states that need to be

Fig. 4. Possible definitions of the accuracy of a theory (see Table 3,
parts A–D).

considered to compute the mutual information is exponential
in the length of Y ′; thus one cannot expect to have enough data
to properly evaluate the accuracy for long Y ′ unless using more
sophisticated methods (as suggested by Pearce and Wiggins
(2006)).

In Figures 4(a)–(d) and 5(e), the accuracy is defined by
I (F; Y ′) = H(Y ′) − H(Y ′|F), where Y ′ changes with the
context. Figure 5(f) presents a slightly different approach,
in which we try to estimate how well a category predicts
the other local categories. The motivation here is that our
earlier approaches could be associated with assertions such as
‘dominant chords tend to go to I chords with a frequency of
X%, to I6 chords with a frequency of Y%, …’. By contrast
Figure 5(f) provides an alternative that is more aligned with
traditional function theories, which often attempt to predict
the next function (the next category) rather than the chord (the
next token) itself. This approach is associated with statements
such as ‘dominant chords tend to go to tonic chords’. As we
will see, our formalism works with all of these alternative
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An Information Theoretic Approach to Chord Categorization and Functional Harmony 7

Fig. 5. More possible definitions of the accuracy of a theory (see Table 3, parts E–F).

Table 3. Possible definitions of the accuracy of a theory Ia(F).

Name of accuracy measure Formal definition

A First order predictive (‘Predictive power’) Ia(F) = I (F; Y ′); where Y ′ = Cn+1, F = Fn
B First-order preceding chord (‘Time reversed’) Ia(F) = I (F; Y ′); where Y ′ = Cn−1, F = Fn
C Mixed past-future first order Ia(F) = I (F; Y ′); where Y ′ = (Cn+1, Cn − 1), F = Fn
D Second-order predictive Ia(F) = I (F; Y ′); where Y ′ = (Cn+1, Cn + 2), F = Fn
E Third-order predictive Ia(F) = I (F; Y ′); where Y ′ = (Cn+1, Cn + 2, Cn + 3), F = Fn
F First-order functional predictive clustering (pairwise clustering) Ia(F) = I (Fn; Fn+1)

definitions, though they require slightly different tools when
computing optimal theories.

1.8 The evaluation plane

Tables 2 and 3 show multiple ways of defining complex-
ity and accuracy, respectively. Assuming we pick one of the
definitions for complexity and one of the definitions for
accuracy, we can now formally define the ‘evaluation plane’
of figure 1.

Definition 3. Evaluation plane. The evaluation plane is a
two-dimensional graph in which the x- and y-axes represent
the complexity and accuracy of all possible theories. Each
theory F of Definition 2 can be located on a point on the plane
defined by (x, y) = (Ic(F), Ia(F)), where Ic(F) and Ia(F)

are the complexity and accuracy metrics associated with F,
respectively.

For example, suppose we want to compare the two theories
in Definition 2, F1 and F2. We start by acquiring a large
corpus of music annotated with surface tokens C. We now
pick our favourite definitions of accuracy and complexity from
Tables 2 and 3, respectively. We compute p(C), p(Y ′), p(F1)

and p(F2) along with p(F1|C), p(F2|C), p(Y ′|F1) and
p(Y ′|F2). (These last distributions are required for

quantifying complexity and accuracy and can be directly com-
puted from the corpus by generating the appropriate histograms.)
We can then position F1 and F2 on the information plane by
computing (Ic(F1), Ia(F1)) and (Ic(F2), Ia(F2)). If Ic(F1) ≈
Ic(F2), we can choose a theory with a larger Ia(F) (see FA and
FB in Figure 1 for a schematic representation of this situation).
Similarly, if Ia(F1) ≈ Ia(F2) we can choose the theory with
smaller Ic(F) (as in the case of FB and FE in Figure 1).

In the general case where all accuracy and complexity scores
are different, we can use a combined score or compute the
optimal curve.

1.9 Using a combined score

If we have a specific relative weighting of accuracy or com-
plexity (parameterized by the constant λ ≥ 0), we can try to
identify the theory with maximal combined score:

L(F) = Ia(F) − λIc(F), (17)

where the constant λ tells us the relative weight of maximizing
accuracy compared to the relative weight of minimizing com-
plexity in the combined score L. This combined score is also
often called the Lagrangian of the complexity–accuracy trade-
off (Tishby et al., 1999). Appendix A describes an algorithm
for finding a theory with a maximal combined score, which
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8 N. Jacoby et al.

solves the following equation:

F = argmaxall possible FL(F). (18)

1.10 Computing the optimal curve

We can now define a privileged class of optimal theories,
which are maximally accurate for a given complexity.

Definition 4. Optimal theory. F is an optimal theory if for
every other theory F ′ such that Ic(F ′) ≤ Ic(F) then Ia(F ′) ≤
Ia(F).

In Figure 1, theory FA would be optimal if all theories with
less complexity (including FB , FC , FH and FE ) have less
accuracy.

Definition 5. Optimal curve; the optimal curve problem.
The set of points on the evaluation plane corresponding to all
optimal theories is called the optimal curve. Finding a theory
on the optimal curve with a complexity less or equal to I 0

c is
called the optimal curve problem:

F = argmaxIc(F)≤I 0
c

Ia(F).

From Equation 18, a theory with a maximal combined score
for a given value of λ is always on the optimal curve. If
measure complexity as mutual information (Table 2, case C)
and accuracy using any of the first five measures in Table 3,
then the set of all realizable points under the optimal curve
(the set of all points (a, c) in the evaluation plane for which
there exists a theory F ′ such that (a, c) = (Ia(F ′), Ic(F ′)) is
convex and dense (Tishby et al., 1999). This means that for any
two points representing theories on the evaluation plane, there
exist other theories realizing the entire line connecting the two
points. The mathematical property of convexity is desirable
because it greatly simplifies the optimal curve problem (see
AppendixA); this is a core reason why we measure complexity
and accuracy using mutual information.

We can use the optimal curve to evaluate theories, rejecting
those that are far from the optimal curve (FD , FB and FC

on Figure 1) in favour of those that are optimal (FA and
FE ) or near-optimal (FG and FH ). Alternatively, we might
investigate optimal theories in their own right, since they
provide self-emergent categories (clusters) of chords. Previous
writers have proposed various other methods for identifying
functional categories from corpus data (Quinn & Mavromatis,
2011; Rohrmeier, 2005; Rohrmeier & Cross, 2008). One of our
contributions here is to provide a principled framework that
can solve this problem for any surface structure.

1.11 Mapping the optimal curve problem to the machine
learning literature: solving the optimal curve
problem

Finding the optimal curve for a given corpus is a well-known
problem in machine learning. If we choose the complexity

to be I (F; X) (as in Table 2, case C) and the accuracy to be
any of the measures of Table 3, cases A–E, then the problem is
known as an ‘Information Bottleneck’problem, the evaluation
plane is known as the ‘information plane’ and the optimal
curve is known as the ‘information curve’ (Tishby et al., 1999;
for applications see Friedman, Mosenzon, Slonim, & Tishby,
2001; Hecht, Noor, & Tishby 2009; Schneiderman, Slonim,
Tishby, de Ruyter van Steveninck, & Bialek, 2002; Slonim &
Tishby, 2000). The accuracy measure I (Cn+1; Fn) of Table 3,
case A is known as the ‘first order predictive-power’or simply
the ‘predictive power’.

In this case, an iterative algorithm proposed by Tishby et al.
(1999) can compute the optimal curve effectively for problems
with less than a few thousand surface tokens. This algorithm
is described in Appendix A, with corresponding code and
web interface provided online (cluster.norijacoby.com). The
algorithm is highly non-trivial and is far more effective than
the naíve approach that computes the accuracy and complexity
for the infinitely large family of all possible theories.

If, on the other hand, we use the number of categories
(Table 2, case A) as our complexity measure, using any accu-
racy metrics of Table 3, cases A–E for the accuracy (metric 3F
requires special treatment), then the problem can be solved by
modifying the Tishby et al. (1999) algorithm. In this variant,
we apply the same iterative process but further constrain the
solution space so that it has the desired number of categories.
We refer to this procedure as finding ‘deterministic’ optimal
theories; the full details are described in Appendix A. Finally,
if we use the complexity measure I (Cn; Fn) of Table 2, case
C and the accuracy measure I (Fn; Fn+1) of Table 3, case F,
the problem is known as ‘pairwise-clustering’ (Friedman &
Goldberger, 2013). Our suggested algorithm can be found in
Appendix A.

1.12 Summary: computing optimal curves

To summarize, the steps involved in computing the optimal
curve are:

(a) We choose a corpus of music (such as Bach chorales).
(b) We choose some elementary representation of sur-

face tokens (for example Roman numerals with or
without inversions, or raw MIDI sonorities).

(c) We choose complexity and accuracy metrics from
Tables 2 and 3, respectively. For example, we choose
the complexity to be I (X; F) = I (Cn; Fn) and the
accuracy to be I

(
X; Y ′) = I (Cn+1; Fn).

(d) We compute the joint probability p(X, Y ′). For
example, for the choices in (c) this is computable
from the pairwise histogram Y ′ = (Cn, Cn+1) .

(e) We compute a large sample of optimal functional
theories (probabilistic categorization schemes)
using the algorithms in Appendix A, plotting the
accuracy and complexity of these theories on the
information plane (as in Figure 1).
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An Information Theoretic Approach to Chord Categorization and Functional Harmony 9

Table 4. Categories obtained from a simple MIDI dataset.

Name of category Type of category Categories

A Optimal determin-
istic theory with 2
cluster

Self-emergent Category 1: C|CEG, E|CEG, A|CFA, A|CEA, F|CDFA, G|CDG, G|CEG, F|CEFA,
C|CEGBb, B|CEGB, Bb|CEGBb, C|CE
Category 2: G|DGB, F|CFA, G|DFGB, D|DFB, B|DGB, C|CFG, D|DFA, B|DFGB,
F|DFGB, G|DGBb

B Optimal determin-
istic theory with 3
cluster

Self-emergent Category 1: C|CEG, E|CEG, A|CEA, G|CEG, C|CEGBb, B|CEGB, Bb|CEGBb, C|CE
Category 2: F|CFA, A|CFA, F|CDFA, G|CDG, D|DFA, F|CEFA, F|DFGB
Category 3: G|DGB, G|DFGB, D|DFB, B|DGB, C|CFG, B|DFGB, G|DGBb

C Optimal determin-
istic theory with 7
cluster

Self-emergent Category 1: C|CEG
Category 2: E|CEG, G|CEG, C|CEGBb , C|CE
Category 3: D|DFA,F|CFA, D|DFB, F|DFGB, G|DGBb
Category 4 : F|CDFA, G|CDG, F|CEFA
Category 5 : G|DGB
Category 6: G|DFGB, B|DGB, C|CFG, B|DFGB
Category 7: A|CFA, A|CEA, B|CEGB, Bb|CEGBb

D FT SD .
Tonic/Dominant/
Subdominant

Pre-determined Category T: C|CEG, E|CEG, A|CEA, C|CFG, G|CEG, B|CEGB, C|CE
Category S: F|CFA, A|CFA, F|CDFA, D|DFA, F|CEFA
Category D: G|DGB, G|DFGB, D|DFB, B|DGB, G|CDG, B|DFGB, F|DFGB,
G|DGBb
Category other: C|CEGBb, Bb|CEGBb

E FMmd
Major/Minor/
diminished triads or
others

Pre-determined Category Major tirads: C|CEG, G|DGB, F|CFA, E|CEG, A|CFA, B|DGB,
G|CEG, C|CE
Category minor triads: A|CEA, D|DFA, G|DGBb
Category diminished triads: D|DFB
Category other: G|DFGB, F|CDFA, C|CFG, G|CDG, B|DFGB, F|CEFA, C|CEGBb,
F|DFGB, B|CEGB, Bb|CEGBb

F Froot
Root based catego-
rization

Pre-determined Category 1: C|CEG, E|CEG, C|CFG, G|CEG, C|CEGBb, B|CEGB, Bb|CEGBb, C|CE
Category 2: F|CDFA, D|DFA
Category 3: F|CFA, A|CFA, F|CEFA
Category 4: G|DGB, G|DFGB, B|DGB, G|CDG, B|DFGB, F|DFGB, G|DGBb
Category 5: A|CEA
Category 6: D|DFB

G Fbass
Categorization
according to bass

Pre-determined Category 1 A: A|CFA, A|CEA, Bb|CEGBb
Category 2 B: B|DGB, B|DFGB, B|CEGB
Category 3 C: C|CEG, C|CFG, C|CEGBb, C|CE
Category 4 D: D|DFB, D|DFA
Category 5 E: E|CEG
Category 6 F: F|CFA, F|CDFA, F|CEFA, F|DFGB
Category 7 G: G|DGB, G|DFGB, G|CDG, G|CEG, G|DGBb

(f) We plot pre-existing categorizations of
interest (for example FT SD), and measure their
distance from the optimal curve, or compare them
to each other.

(g) Using an algorithm from Appendix A, we com-
pute the self-emergent deterministic optimal the-
ories that use k categories (optimal deterministic
k-categorization schemes) and position them on the
evaluation plane. These deterministic optimal the-
ories are usually found very near the unconstrained
optimal theories of the optimal curve.

2. Corpus results and comparisons with
alternative methods

2.1 Using the framework on a simple corpus

The following examples are intended to show that our frame-
work can model important music-theoretical concepts in the

context of real-world corpora. We focus mainly on surface
tokens that are manually annotated Roman numerals. How-
ever, in Sections 2.3–2.4 we consider a broader spectrum of
data including MIDI-based corpora. In the current section
we also focus on the Information Bottleneck accuracy and
complexity measures (Table 2, case C and Table 3, case A),
I (F; X), I (Y ′; F) with Y ′ = Cn+1 and X = Cn , since these
choices are standard in the machine-learning community. A
comparison of different accuracy and complexity measures is
provided in Section 2.5.

Let us now return to our earlier examples (Sections
1.4–1.5), and plot them on a curve computed from a dataset of
actual music. We apply our framework to corpus data
compiled from Tymoczko (2011), which records harmonic
progressions in major-mode passages from 70 Bach chorales.
(Note that unlike some of the later cases we will consider, this
dataset ignores chord inversions and uses just seven
surface tokens – the familiar Roman numerals – to label
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10 N. Jacoby et al.

major-mode harmonic progressions; note also that in con-
structing the dataset, Tymoczko regarded I6/4 chords as V,
unlike David Huron in the dataset in Section 2.4 below, who
regarded I6/4 chords as I.) The algorithm of Appendix A
only needs the empirical distribution of consecutive chords
p(Cn+1, Cn) as input which is computable from Tymoczko’s
(2011, p. 230) Figure 7.1.6.

Figure 6 shows the evaluation plane and the optimal curve.
The black curve represents the optimal trade-off between com-
plexity and accuracy, computed using the iterative algorithm
inAppendixA. For every possible theory F (satisfying Defini-
tion 2) the point (Ic(F), Ia(F)) = (I (F; X),

I (F; Y ′)) = (I (Fn; Cn), I (Fn; Cn+1)) lies below this curve.
The horizontal line at the top of the curve represents the
mutual information between the current and following chord,
which is the upper limit of I

(
X; Y ′) = I (Cn; Cn+1).

Figure 6 shows three points associated with optimal deter-
ministic theories with two, three and four categories (clusters).
This optimal categorization was computed using a variant of
the algorithm where we limit the number of categories (see
the Appendix and Slonim and Tishby (2000)). These clusters
are entirely self-emergent, in that they are determined solely
by the probabilities p(Cn, Cn+1) in the Bach corpus.

Figure 6 is interesting for several reasons. First, many fam-
iliar ways of thinking about harmony lie at or are extremely
close to the optimal curve. The optimal categorization into
two categories corresponds to ‘dominant’ and ‘not dominant’.
Even more remarkably, the optimal assignment to three cat-
egories coincides with FT SD , the textbook Tonic, Subdomi-
nant, and Dominant classification of Equation 2. Note by con-
trast, that the FMmd of Equation 4 is positioned significantly
below the optimal curve; indeed it is significantly less accurate
than the optimal two-symbol clustering (FAB). Furthermore,
the classification into four categories, while relatively familiar,
contains an interesting music-theoretical wrinkle, grouping
I and iii as tonics, V and vi io as dominants, IV and vi as
subdominants, while leaving ii in its own category. It is sur-
prising that vi resembles IV more than ii does, suggesting an
interesting topic for further music-theoretical research. (One
thought is that vi and IV both can move to I in progressions
like vi → I 6 or IV 6 → I , while i i → I progressions are
quite rare.) Note that the categorization Fsof t-T SD , shown in
Equation 7, performs similarly to FT SD , and is only slightly
off the optimal curve.

2.2 Using the framework: categorization
according to root and bass

This section explores another application of our framework.
Figure 7 depicts two simple theories with similar degrees
of complexity: the first classifies triads and seventh chords
according to their roots, while the second classifies them
according to their bass note (see table 1c and 1d). We use a new
dataset (dataset 12 from Table B3) drawn from Tymoczko’s
handmade analyses of all 371 Bach chorales, where the surface
tokens combine Roman numerals and figured bass symbols,

so that I 6 and I5/3 are distinct. Somewhat surprisingly, the
fundamental-bass theory is slightly more accurate than the
root-functional theory, whereas the root-functional approach
is significantly simpler. The accuracy of fundamental-bass
theory reflects the fact that there are significant regularities
in tonal bass lines not captured by functional information
(for instance, bass lines tend to move stepwise or by fifth).
The simplicity of the root-functional theory is related to the
rarity of the iii chord, which constitutes only 0.8% of the
chords in the corpus. Crucially, however, one gains only a
modest amount of accuracy when moving from root-function
to fundamental-bass (0.047 bits, from 0.62 to 0.66, which is
3.94 % of the 1.2 bits, the total mutual information). However,
the change in the complexity is significantly greater: 0.44 bits
(from 2.3 to 2.7) or 11% of the maximal complexity (the
entropy H(X) = I (X; X)). Furthermore, both classifications
lie quite a bit below the optimal curve, far from the optimal
deterministic seven-category scheme:

class T1: I, vi, vi6, vi6/4, vi7, vi2, iii, iii6, iii7, iii6/5, iii4/3
class T2: I6, I6/4, ii6/5
class S1: IV, ii, , ii6, ii6/4, ii7, vi6/5, vi4/3
class S2: IV6, IV6/4, ii4/3, ii2, viiø2

class D1: V
class D2: V6, V7, V6/5, viio, viiø7, iii6/4
class D3: V6/4, V4/3, V2, viio6, viio6/4, viiø6/5, viiø4/3

At first glance, this classification might seem to show that
information-theoretic ideality diverges from musical intuition.
But on further reflection one can see the outline of famil-
iar functional ideas: classes T1 and T2 are tonic chords, as
our labels suggest, with the T1 containing the root position
tonic, and most triadic and seventh-chord inversions of vi
and iii. T2 contains the other inversions of the tonic chord
(perhaps suggesting that from an information-theoretic point
of view I6/4 is more tonic than dominant suspension), and
– rather surprisingly – the ii6/5 chord. Class S1 and S2 are
basically subdominants, with S1 containing the prototypical
subdominants ii, ii7, IV, ii6 and S2 containing only chords
with 6̂ or 1̂ in the bass. (Note again the surprising presence
of viiø2 among the subdominants of S2; this is likely because
it often progresses to V7 by way of I6/4.) Finally, D1, D2,
and D3 are basically dominant chords with V the sole occu-
pant of its category, chords on 5̂ and 7̂ occupying D2, and
chords on 2̂ and 4̂ occupying D3. In one sense, then, this
solution is telling us something we already knew, namely that
an ideal seven-category system would group chords using
both root-functional and fundamental-bass principles. More
interesting is the fact that the algorithm actually shows us
how to do this, producing a set of categories that no human
would devise, yet which make a certain amount of retro-
spective sense. It could therefore prompt analytical work that
helps us appreciate the virtues of this particular functional
scheme.

D
ow

nl
oa

de
d 

by
 [

15
8.

22
2.

15
4.

19
7]

 a
t 0

7:
47

 2
3 

Se
pt

em
be

r 
20

15
 



An Information Theoretic Approach to Chord Categorization and Functional Harmony 11

Fig. 6. Comparison of different categorization schemes in a dataset of major-mode passages from 70 Bach chorales in Tymoczko
(2011a, §7. 1).

Fig. 7. Root function and bass theories compared on the evaluation plane with deterministic optimal theories, based on a new dataset of all
major-mode passages in all Bach chorales (analysed by Tymoczko).

2.3 Using the method for analysing fully automatic MIDI
data

So far we have worked with manually labelled data. The
following example shows how one can use our methods in the

context of fully automatic analysis. The point is, first, to show
that our methodology can work with minimal assumptions,
and second, to compare the results with those of the previous
section.
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12 N. Jacoby et al.

Beginning with MIDI rendition of the Bach chorales, we
reduced each chorale to a sequence of vertical sonorities or
‘slices’. (The same procedure was used also by Quinn and
Mavromatis (2011) and White and Quinn (2014) and imple-
mented in music21 (Ariza & Cuthbert, 2010).) We adopted the
key-finding methodology of White and Quinn (2014), who
used a Krumhansl–Schmuckler key-finding algorithm on a
windows of eight slices, so that each slice was analysed eight
times. If a slice was assigned to multiple keys, we selected the
key with the highest score. For simplicity, we only analysed
major segments. Each slice was then transposed to C major.
For each transposed slice we recorded its pitch classes together
with the pitch class of the bass note. Therefore a non-inverted
tonic chord (I in the local key) would be recorded as ‘C| C
E G’; this says that the bass is C and that the pitch classes
in this chord are C, E and G. We focused on the 22 most
common sonorities (those that comprise more than 1% of
the dataset). The results of this analysis (including optimal
and pre-existing categorizations) are detailed in table 4 and
figure 8.

The optimal three-category deterministic theory was, when
translated to Roman numerals:

Category 1: I, I6, vi, I6/4, V/IV, I2, V2/IV, I (no fifth)
Category 2: IV, IV6, ii6/5, V4, ii, IV7, V2

Category 3: V, V7, viio6, V6, I4, V6/5, v

This is clearly very similar to the standard tonic–
subdominant–dominant classification, with prototypical
chords such as I and I6 belonging to the tonic category, IV, IV6

and ii belonging to the subdominant category and V, V7 and
V6 belonging to the dominant category. We emphasize that
this categorization scheme is fully self-emergent, requiring
only very minimal assumptions about the structure of the
underlying music. To be sure, a few categorizations deviate
from those of theory textbooks: for example, the non-tertian
sonority I4 (C|CFG) was categorized as dominant, probably
because it shares with dominant the tendency to be followed
by I. But the correspondence between standard functional
classifications and the results of machine learning is quite
striking. This can also be seen in Figure 8, which shows that
the standard TSD is very close to the optimal three-category
deterministic cluster. Note that we again see that fundamental
bass categorization is more complex and more accurate than
a categorization based on the root of the chord.

These simple and preliminary results are encouraging, since
they show that our methods can be used on purely automatic
datasets, and that some of the handmade results are robust to
the analysis procedure. The next section provides a much more
detailed analysis of 16 datasets, mostly but not all handmade.
The different corpora span a range of different extraction
procedures and musical materials. We have also provided our
code, as well as an applet allowing others to test their own
datasets with our methods (cluster.norijacoby.com).

2.4 Analysing different surface representations:
computing optimal curves and optimal deterministic
categorizations for 16 datasets

We now apply our approach to 16 datasets, 11 of which are
drawn from published works (de Clercq & Temperley, 2011;
Huron, 2006; Rohrmeier & Cross, 2008; Temperley, 2009;
Tymoczko, 2011) and five of which are new datasets con-
structed by author Tymoczko.

Again, we focus on the accuracy and complexity measures
in Table 2, case C and Table 3, case A: Ic(F; X), Ic(Y ′; F)

with Y ′ = Cn+1 and X = Cn . Note that some of the published
works provide only the conditional distribution p(Y |X),
whereas our algorithm requires the joint distribution
p(Cn+1, Cn) = p(Cn+1|Cn)p(Cn). However p(Cn) can be
estimated from p(Cn+1|Cn) as the first left eigenvector of
the matrix p(Cn+1|Cn) (Feller, 1950). This estimation was
only done when the marginal distributions were not avail-
able (Huron, 2006; Tymoczko, 2011). In all other cases, the
distributions were available, and we used p(Cn) directly. In
cases where the marginal distribution was available we used
the eigenvalues estimation of the marginals and the marginals
themselves to verify that the two methods produced similar
results, thereby validating the usage of the eigenvalue method
in the cases where this approximation is necessary.

Tables B1 and B2, Appendix B, present datasets from
published works: the corpora range from manual analyses
with seven diatonic scale degrees (datasets 1–5, 8), manual
analyses with twelve chromatic scale degrees (datasets 6, 7),
chord bigrams extracted from manual analyses with 12 possi-
ble scale degrees (dataset 9, based on de Clercq and Temperley
(2011)), and machine-constructed datasets of simultaneous
notes expressed using standard pitch names (datasets 10 and
11, from Rohrmeier and Cross (2008)), where the chords were
extracted from a MIDI file and transposed to C major or C
minor, with the original key identified using a key-finding
algorithm. These two latter datasets are very different from
the others as the raw data include all sonorities, and not just
harmonic triads and seventh chords. However, Rorhmeier and
Cross (2008) simplified their dataset by keeping only the most
common sonorities, which eliminated all but one non-tertian
chord (the ‘suspension’ chord {C, D, G}). Thus although
their original dataset is quite different from the others, the
reduced data are fundamentally similar, since there is a direct
translation between a Roman numeral such as ‘ii in C major’
and an octave-free set of letter names such as {D, F, A}. Their
analysis is similar to our analysis in Section 2.3, with the main
differences being (a) that Rohrmeier and Cross (2008) used
sophisticated and rhythm-dependent methods for eliminating
passing chords; (b) that they used a wider window for key-
finding (assigned one key to all the chorale); and (c) that they
recorded transposed pitch classes but not the bass.

Finally, in order to facilitate comparison between the rock
dataset 7 (Table B2) and the others, we made the following
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An Information Theoretic Approach to Chord Categorization and Functional Harmony 13

Fig. 8. Evaluation plane for a corpus of Bach chorales analysed from MIDI renditions. The results show high agreement between automatic and
human labelled data. In particular, the standard tonic/subdominant/dominant (FT SD) classification is quite close to the optimal three-category
deterministic theory. Furthermore, strict bass categorization is more complex and more accurate than a categorization that uses the root of the
chord.

reductions: we deleted the very rare chords: bII and #IV, then
merged the chords III and bIII, VI and bVI, and VII and
bVII, thus generating seven surface tokens with diatonic scale
degrees I–VII. This reduction constitutes dataset 8 in Table
B2. Note that we analysed the same dataset twice: once with
this reduction (dataset 8) and once without it (dataset 7). As
we will shortly see (see Figures 10(c)–(d) later on), our main
conclusions were similar in both cases.

We also present five new datasets constructed by Tymoczko
(Tables B3 and B4). Two of these derive from manual analyses
of the 371 Bach chorales in the Riemenschneider edition;
dataset 12 consists of transition frequencies between the 49
major-mode diatonic triads and sevenths (with bass notes)
dataset 13 consists of the analogous transition frequencies
for the 91 triads and seventh chords most common in the
minor mode. (Keys here are determined locally rather than by
the global tonic of the piece.)3 The Mozart datasets contain
the analogous information derived from analyses of all the

3The first 70 chorales were compiled with the help of undergraduates
in Tymoczko’s MUS306 course at Princeton University, as well
as several graduate students (including Hamish Robb and Luis
Valencia). For the remaining 301 chorales, Tymoczko corrected
analyses produced by Heinrich Taube’s ‘Chorale Composer’
software, as improved by Simon Krauss, an undergraduate thesis
student of Tymoczko’s.All data were then thoroughly cross-validated
using Michael Cuthbert’s music21 toolkit, with all discrepancies
further analysed to locate possible errors. The 49 major-mode chord
forms include three triadic and four seventh-chord inversions for
each of the 7 scale degrees. The 91 minor mode chords include three
inversions of the 13 triadic forms residing in the natural, harmonic,
and melodic minor scales (two triadic forms for every chord except
the tonic), and all the corresponding seventh chords except for imaj7,

Mozart piano sonatas, compiled with the assistance of more
than 30 music theorists (dataset 14 contains major-mode pas-
sages, dataset 15 minor-mode). Finally, the Palestrina dataset
contains handmade analyses of all Ionian, Mixolydian and
‘Lydian’ passages in seven Palestrina masses, two in Ionian
and one in each of the remaining modes. This dataset explores
the limitations of standard Roman numerals in the analysis of
late Renaissance repertoire.

Tables B1–B4 provide a comprehensive comparison be-
tween optimal deterministic categorization obtained for the
sixteen datasets. Figures 6–11 show the evaluation plane and
optimal curves associated with some of these datasets. (Note
again that the optimal curve itself is computed without the
assumption of deterministic categorization; thus it is notable
when deterministic categories are found very near the curve. )
The categorizations introduced in Equations 2, 4 and 7 (FT SD ,
FMmd , Fsof t-T SD) are indicated by the stars on the plane. The
first few optimal deterministic categories are indicated on the
plane.

Taken together, these datasets provide clear evidence for the
syntactical reality of the tonic/subdominant/dominant clas-
sification. In datasets 1–8 in Tables B1 and B2, the three-
cluster deterministic optimal categories always place I, IV
and V in different clusters. This is consistent with the familiar
idea that I, IV and V are ‘prototypes’ of tonic, subdominant,
and dominant categories, with the other chords (II, III, VI
and VII) more loosely associated with one or more categories
(Agmon, 1995). Furthermore, Figures 6, 9 and 10 show that
FT SD and Fsof t-T SD were nearly optimal on datasets 1–8,

the minor triad with a major seventh, which does not often appear in
classical music.
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14 N. Jacoby et al.

Fig. 9. Information curve (black) for major Mozart passages based on the Tymoczko datasets (2011a, §7. 1) plotted on the evaluation plane.
The maximal accuracy (I (Cn; Cn+1)) is indicated by the upper line. The figure also shows the comparison between optimal clustering to 2, 3
and 4 clusters and FT SD , Fsof t-T SD , FMmd of Equations 2, 4 and 7. The figure demonstrates that two different categorization schemes (in this
example FT SD and the optimal categorization to three clusters) can perform similarly.

lying very close to the optimal curve. By contrast, we can see
that the clustering FMmd (even though it contains the same
number of symbols as FTSD) performed poorly on all the
relevant datasets. In datasets 1 and 2, the textbook clustering
of Equation 2 was the optimal three-cluster categorization.
In keeping with the functional tradition, datasets 1, 2, 6, 8,
and 10 often group chords V and viio together. Similarly, the
first cluster in the two-cluster division of dataset 10 is {{D, G,
B}, {D, F, G, B}, {D, F, B }}, or V, V 7 and vi io – the same
clustering produced in many of the handmade corpora. To be
sure, there are often deviations from traditional categorization
schemes: for example, chords I and ii are sometimes grouped
together (datasets 3, 4 and 6; Figure 9); this is probably due to
the fact that both I and ii tend to progress to V. However the
generally close alignment between the functions of traditional
theory and our self-emergent clusters suggest that listeners
could infer traditional tonal functions directly from statistical
properties of the musical surface.

More specifically, the close alignment suggests that local
predictions play an important role in traditional functional
categorization. We can largely recover the terminology of
traditional harmonic theory by categorizing chords so as to
maximize our ability to anticipate the next chord, rather than,
for example, focusing on shared pitch-class content, levels
of dissonance, or the intrinsic ‘sound’ of each sonority. This
suggests that to be a dominant chord is to a significant extent
a matter of acting like a dominant chord; that is, to move
authentically to I and I 6 and, less often, deceptively to IV 6 and
vi. (Of course, there is more to traditional functional categories

than simply predicting the next chord, as we discuss in the next
section.) This is significant insofar as traditional accounts do
not emphasize the predictive utility of tonal functions.

The two non-classical datasets deserve extra attention. As
expected from de Clercq and Temperley (2011), chord IV is
highly important in the rock corpus: it categorized alone in
the optimal 3- and 4-cluster solutions (see dataset 8 of Table
B2). The categories in dataset 9, which distinguish progres-
sions whose roots belong to the major scale (cluster 1) from
those whose roots belong to natural minor (cluster 2) are also
interesting in that they it suggests a kind of oscillation or
modulation between two different harmonic regions. Note also
that the common-practice division into tonic, subdominant
and dominant (FT SD and Fsof t-T SD) worked quite well (see
Figure 10(d)), indicating that the classical theory of functional
categories continues to apply to popular music, at least at a
coarse-grained level. A similar phenomenon is evident in the
Palestrina dataset, which consists of music written before the
widespread adoption of functional harmony. Here again, we
see that the self-emergent optimal three-category clustering
is similar to tonic/subdominant/dominant, suggesting a kind
of ‘proto-functionality’ already at work in this purportedly
‘modal’ music. Our approach thus supports the intuition that
the boundaries between ‘functional tonality’ and other styles
of music is a fuzzy one, with aspects of functionality present
in music outside the ‘common practice period’ of 1680–1850
(Tymoczko, 2011). This in turn supports the analytical project
of attempting to understand this proto-functionality in greater
detail.
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An Information Theoretic Approach to Chord Categorization and Functional Harmony 15

Fig. 10. Optimal curve plotted on the evaluation plane for datasets of (a) Baroque music from Huron (2006); (b) 46 excerpts of common practice
examples from a textbook (Kostka & Payne 1995) analysed by Temperley (2009); a corpus of rock music analysed by de Clercq and Temperley
(2011) with two versions, one with chromatic inversion-free Roman numerals (c), and one reduced to 7 diatonic scale degrees (d). This reduction
was done in order to compare this dataset directly with the other common practice corpora. In each diagram we marked the accuracy and
complexity for the first few optimal deterministic categories and FT SD (I, vi, iii/IV, ii/V, viio/all other), Fsof t-T SD (I, iii(50%), vi(50%)/IV, ii,
vi(50%)/V, viio, iii(50%)/all other), FMmd (I, IV, V/ii, vi, iii/viio/all other) of Equations 2, 4 and 7. Note that in spite of the large stylistic range,
FT SD and Fsof t-T SD are always near-optimal, while FMmd is suboptimal. In the rock corpus (d), we also compare the categorization based
on the connected components of the graph in Figure 5(c) of de Clercq and Temperley (I, bii, #IV, viio/ii, iii, vi/biii, bvi, bviio/V, IV; see 2011,
p. 66, Figure 4). We see that categorization based on our method is comparable and slightly better than the one based on the similarity graph
presented in their paper. The full list of categories marked on this graph can be found in Appendix B (Tables B1 and B2).

It is worth re-emphasizing that our analysis involves very
few assumptions: we simply ask how best to compress surface
tokens – whatever they are – to predict the near future. Thus,
unlike Rohrmeier and Cross (2008), we do not impose the
requirement of hierarchical clustering; in general, the pro-
cess of increasing the number of clusters is not simply a
process of splitting one cluster into two components. Nor
do we need to resort to intuitive similarity metrics based on
statistics of chords, as in Tymoczko (2003) or Rohrmeier and
Cross (2008). These metrics, like our approach, use transition
probabilities to develop a notion of chord classification or
similarity, and to this extent deliver results closely related to
our own. (Indeed, Figure 10 shows high agreement between
our clusters and the hierarchical clustering in Rohrmeier and
Cross (2008).) The difference is that our approach is concep-
tually minimalist, and is grounded in established techniques
from information theory.

2.5 Comparison with different accuracy metrics

The examples in the previous section depart from traditional
theory by focusing on the near-future. Traditional harmonic
functions might be thought to include the past as well: two
chords are thought to have the same harmonic function if they
both proceed to and are preceded by the same harmonies.
(Thus chords IV6/4 and V6/5 are said to have different har-
monic functions, even though both chords overwhelmingly
tend to proceed to I.) However we can easily use our
methodology to categorize chords based on both their ability
to ‘retrodict’ the past, or even a combination of prediction
and retrodiction; it is simply a matter of choosing a differ-
ent accuracy metric (Table 3). Tables 5–6 provide optimal
deterministic categories for two of our datasets. These tables
show that all variants yield very similar results. The only sub-
stantial difference is that retrodiction causes the tonic chord
(I ) to be categorized separately, largely because tonic chords
are very likely to be preceded by dominant chords. (In the

D
ow

nl
oa

de
d 

by
 [

15
8.

22
2.

15
4.

19
7]

 a
t 0

7:
47

 2
3 

Se
pt

em
be

r 
20

15
 



16 N. Jacoby et al.

Fig. 11. Comparison of our optimal deterministic categories and the hierarchical clustering of minor Bach chorales in Rohrmeier and Cross
(2008). The figure shows high agreement between the two approaches.

Table 5. Deterministic optimal categories of structural variants in dataset 1A.

Variant (Table 3) Compressed Predicted Categories
Variable Variable

A First-order predictive (standard) X = Ct Y = Ct+1 2 Categories: V, vi io/I, IV , i i, vi, i i i
3 Categories:V, vi io/I, vi, i i i/IV , i i
4 Categories:V, vi io/I, i i i/IV , vi/ i i

B First-order preceding chord (‘time reversed’) X = Ct Y = Ct−1 2 Categories:I/V, IV , vi i o, i i, vi, i i i
3 Categories:I/V, vi i o/IV , i i, vi, i i i
4 Categories:I/V, vi i o/IV , vi, i i i/ i i

C Mixed past-future first order X = Ct Y = (Ct−1, Ct+1) 2 Categories:V, vi io/I, IV , i i, vi, i i i
3 Categories:V, vi i o/I, i i i/IV , i i, vi
4 Categories:V, vi io/I, i i i/IV , vi/ i i

D Second-order predictive X = Ct Y = (Ct+1, Ct+2) 2 Categories:V, vi io/I, IV , i i, vi, i i i
3 Categories:V, vi io/I, vi, i i i/IV , i i
4 Categories:V, vi io/I, i i i/IV , vi/ i i

forward-oriented accuracy metric of Table 3, case A, I and
iii can categorized together because they tend to move in the
same way; when we focus on retrodiction, it becomes relevant
that I is more likely to be directly preceded by a dominant.)
This suggests that the clusters of functional harmony can be
simultaneously understood as indicating how chords tend to
move and how chords tend to be approached. Table 3 shows
the deterministic optimal categorization into three categories
obtained using dataset 1A. (Dataset 1A is drawn from all

371 chorales rather than the 70 in dataset 1, and also uses
the accurate marginal distribution.) The second-order variant
produces results identical to those in the standard method,
which is why we focus on first-order statistics in this article.
This supports the hypothesis that harmonic categorization is
primarily dependent on very local structure.

Table 7 calculates the optimal three-category determinis-
tic categorization with the functional predictive clustering
accuracy metric (in Table 3, case F) and with the standard
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An Information Theoretic Approach to Chord Categorization and Functional Harmony 17

Table 6. Deterministic optimal categories of structural variants in dataset 12.

Variant (Table 3) Optimal 3 Categories for dataset 12

A First-order predictive Category 1: I, vi, i i i, V 2, vi6, V 7/IV , V 6/5/IV , V 6/vi, i i i6, V 2/IV ,

V 6/5/vi, vi iø4/3, vi io6/4, vi iø6/5, V 2/V, I maj7, V 4/3/IV , vi io7/vi, V/vi, v
Category 2: IV , IV 6, i i6/5, i i, i i7, I 6/4, i i6, V 6/5/V, IV maj7, vi io6/V, IV maj6/5, vi7, i i2,
V/V, V 6/V, vi iø7/V, IV maj2, V 7/V, vi6/4, vi iø4/3/V, V 6/5/ i i, I 6

Category 3: V, V 7, V 6, vi io6, vi io, V 6/5, vi i/o7, V 4/3, V 6/4, IV 6/4
B Time Reversed Category 1: I, V 7, V 2, i i i6, V 6/vi, I maj7

Category 2: I 6, vi, IV 6, i i i, vi6, V 4/3, V 2/IV , vi7, vi io6/V, IV maj6/5, V 6/5/vi, V 6/4, vi6/4,

vi iø4/3/V, vi io7/vi, V/vi, V 4/3/IV , IV 6/4
Category 3: V, IV , V 6, vi io6, i i6/5, V 6/5, i i, i i7, I 6/4, i i6, vi iø7, V 6/5/V, V 7/IV , IV maj7,
V 6/5/IV , vi io, i i2, vi iø4/3, V/V, V 6/V, vi iø7/V, IV maj2, V 7/V, vi io6/4, V 2/V, vi iø6/5,
V 6/5/ i i, v

C Mixed past-future Category 1: I, I 6, vi, V 7/IV , vi6, i i i6, vi io6/V, V 2/IV , V 6/5/IV , V 6/vi, V 7/V, vi6/4,
V 4/3/IV , I maj7, V 6/5/ i i, IV 6/4, v

Category 2: IV , V 6, IV 6, i i6/5, vi io6, V 2, i i, i i7, I 6/4, i i6, i i i, V 6/5/V, IV maj7, vi7,
IV maj6/5, vi io, i i2, vi iø4/3, V 6/5/vi, V/V, V 6/V, vi iø7/V, IV maj2, vi io6/4, vi iø4/3/V ,
vi iø6/5, V/vi
Category 3: V, V 7, V 6/5, vi iø7, V 4/3, V 6/4, V 2/V, vi io7/vi

D Second-order predictive Category 1: I, I 6, vi, IV 6, i i i, IV maj6/5, vi6, vi7, V 6/5/IV , V 7/IV , i i i6, vi io6/V, i i2, V 2/IV ,

V 6/5/vi, V 6/V, vi iø7/V, vi iø6/5, V 7/V, V 4/3/IV , V 2/V, I maj7, v

Category 2: IV , i i6/5, i i, V 2, i i7, I 6/4, i i6, V 6/5/V, IV maj7, vi iø4/3, V/V, vi io6/4,
vi iø4/3/V, IV maj2, vi6/4, V 6/5/ i i
Category 3: V, V 6, V 7, vi io6, V 6/5, vi iø7, V 4/3, V 6/vi, vi io, V 6/4, V/vi, vi io7/vi, IV 6/4

first-order predictive metrics (Table 3, case A), using two
versions of 371 Bach chorales (datasets 1A and 12). The table
shows that the categories obtained by the two methods are
once again similar: in the case of dataset 1A they are identical.
In the case of dataset 12 there are some important differences,
however, with V and IV clustered together in the functional
predictive approach, contrary to musical intuition. Further-
more, the algorithm for computing the functional predictive
clustering is usually much slower and more sensitive to the
problem of local minima (see Appendix A).

The similarity of the approaches can be underscored by
returning to the example in Section 2.2 (Table 1, cases C
and D), which compares root and bass using the accuracy
metric in Table 3, case A. Somewhat surprisingly, when we
move to the accuracy metric of Table 3, case F, the results
do not differ materially: once again the root-oriented theory is
significantly simpler (2.3 bits versus 2.7 bits or 11% of the total
entropy) whereas the bass-oriented theory is slightly more
accurate (0.37 bits versus 0.33 bits or 2.8% of the maximal
mutual information, an even smaller difference than the 3.9%
in first-order predictive variance of Section 2.2). This shows
that the greater accuracy of the bass-oriented theory is not
simply a result of the fact that the first-order predictive variant
uses functions to predict chords themselves. (One might have
thought, as we in fact did, that the superiority of the bass-
oriented theory was an artifact of using functions to predict the
specific inversion of the next chord.) Even when we closely
model the procedures of traditional music theory, in which

functions are used to predict functions, the bass-oriented the-
ory proves to be slightly more accurate.

Further research is needed to compare the advantages and
disadvantages of these variants. One natural direction for a
generalization would be to use variable length Markov chains.
For example, Conklin (2010) and Pearce and Wiggins (2006)
developed an approach in which predictions are based on
‘multiple viewpoints’ or variable length Markov chains. If we
apply this approach here, we can try to estimate the variable Y
with a ‘mixed-order’ variable Y ′ (instead of a fixed order, as
is the case for all of the variants in Table 3, cases A–E). This
promising direction calls for further investigation.

2.6 Comparison with HMM

Recent work has applied Hidden Markov Models (HMM)
to corpus analysis (Mavromatis, 2009, 2012; Raphael &
Stoddard, 2004;Temperley, 2007).Although both models come
from the domain of machine learning, HMM is a generative
process where surface tokens are emitted from hidden states;
by contrast, our method is an analytical process that generates
functional states from surface tokens. Figure 12 shows the
similarities and differences between these two formalisms.
The HMM model can be related to the compositional process
where the composer has some desired functional progression
in mind, which is then expressed by the appropriate surface
tokens. Our formalism, on the other hand, can be likened
to the experience of a listener who reconstructs a functional

D
ow

nl
oa

de
d 

by
 [

15
8.

22
2.

15
4.

19
7]

 a
t 0

7:
47

 2
3 

Se
pt

em
be

r 
20

15
 



18 N. Jacoby et al.

progression as musical information unfolds in real time. In
our formalism, once a categorization scheme has been acq-
uired, the listener simply computes her estimate of the current
function from the current surface token. In a HMM model,
deciphering functional labels from surface tokens is non-direct
and requires applying a complex algorithm requiring high
memory capacity (Viterbi decoding; see Rabiner & Juang,
1986). Clearly there will be some situations where HMM
approaches are preferable, including those where we wish to
simulate a composer’s behaviour; in this sense the methods
are complementary.

The main advantage of our method is that ours has signifi-
cantly fewer degrees of freedom. In HMM one needs to specify
p(Cn|Fn), which is comparable to p(Fn|Cn) in our approach.
However in HMM one also needs to specify p(Fn+1|Fn)

which is a matrix of size |F |×|F |. These extra degrees of free-
dom do not necessarily correspond to knowledge possessed
by musical listeners. (For example, a listener might know that
tonics follow dominants, but not have a very specific quanti-
tative hypothesis about the frequency of this progression.) In
our approach we simply specify clusters (‘I and vi are tonics’)
and let the algorithm derive probabilities such as p(Fn+1|Fn).
Thus it is easy to compare pre-existing categorization schemes
(Table 1), whereas this is not completely natural using the
HMM approach.

Table 8 compares the two methods as applied to the same
corpus, modelling functional categories in two different
datasets: (a) dataset 1A, inversion-free two-chord Roman-
numeral progressions drawn from major-mode passages in all
371 chorales; and (b), dataset 12, containing two-chord major-
mode progressions drawn from the 371 chorales, but including
figured-bass symbols as well as inversions. In both cases, we
cluster each chord to the most likely function associated with
it. Formally, we choose for each chord c the function f that
maximizes the likelihood:

P(Fn = f |Cn = c) = p(Cn = c|Fn = f )

× p(Fn = f )/p(Cn = c). (19)

For HMM we used Matlab’s hmm_train function with three
hidden states. Although both techniques reproduce the TSD
classification in the 7-category dataset (1A), the HMM has
more trouble with more categories: here, IV and V are catego-
rized in the first cluster and I and V 7 in the second. This sug-
gests that our framework is more consonant with traditional
functional ideas. In retrospect, this is not surprising, since we
are using methods specifically designed for clustering (see
Friedman et al., 2001; Hecht et al., 2009; Slonim & Tishby,
2006).

Further research is needed to determine whether the adv-
antage of our approach derives simply from the reduction
in degrees of freedom or from deeper structural differences.
It is suggestive that our approach originates from a model
of how the brain uses perceptual categories to screen out
irrelevant sensory information (Tishby & Polani, 2011). Any
ear-training teacher will recognize this familiar musical situa-
tion: multiplicity often overwhelms beginning students, who

Fig. 12. Structural similarities between our approach and HMM. The
arrows in the diagram represent a graphical model (Feller, 1950) of
the statistical relation between the random variables Cn and Fn . In
the HMM all other distributions are determined by p(Fn+1|Fn) and
p(Cn |Fn) but in our approach all other distributions are determined
from p(Fn |Cn). In both cases we assume the empirical distribution
of Cn is computable from a large corpus.

struggle to distinguish closely related chords such as V4 /3 and
vi io6, IV6 and vi, or I 6 and iii. Many pedagogues recommend
that students begin with simplified categories such as tonic,
predominant and dominant, or these same categories aug-
mented with bass notes (Quinn, 2005). Once these perceptual
categories are firmly in place students can then turn to the finer
differentiations within categories. The mathematics of our ap-
proach closely mimic this process of perceptual simplification
(see Tishby & Polani, 2011), with the plausibility of its results
suggesting that prediction constitutes one important feature of
traditional harmonic functions.

2.7 Discussion

The strength of our framework is that it is a unified, fairly
assumption-free approach where harmonic categories emerge
naturally from data. The twin notions of the evaluation plane
and optimal curve help to focus attention on the inherent
tradeoffs between complexity and accuracy. This gives a new
way to consider the gains that can be obtained by altering
the resolution of harmonic theories (i.e. adding or subtract-
ing additional categories or symbols). As we have seen, our
framework reproduces traditional classifications into tonic,
subdominant and dominant categories, while suggesting sev-
eral avenues for more detailed music-theoretical research –
such as the similarity of IV and vi in Figure 6, or the presence
of attenuated harmonic functionality in Palestrina and rock. In
this sense, corpus data and machine learning can provide the
impetus for more traditional and detailed music-theoretical
explorations.

The strength of this method is also a weakness: our method
uses only probability distributions while ignoring the psycho-
logical perceptual similarities of chords. This can produce
categories that make sense based on local statistics, but are
less intuitive in musical terms, grouping chords according
to behaviour rather than sound. (Recall, in this context, the
difference between IV6/4 and V6/5, which both tend to pro-
ceed to I .) That said, since perceptual similarity can be ex-
pected to influence composer choice, and hence the historical
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An Information Theoretic Approach to Chord Categorization and Functional Harmony 19

Table 7. The deterministic optimal categorization into three categories of the first order predictive (Table 3A) and first order pairwise (Table
3F) variants.

Variant (Table 3) Deterministic optimal Deterministic optimal
categorization to three categories: dataset 12
categories: dataset 1A

A First-order
predictive

Category 1: I, vi, i i i Category 1: I, vi, i i i, V 2, vi6, V 7/IV , V 6/5/IV , V 6/vi, i i i6, V 2/IV ,

V 6/5/vi, vi iø4/3, vi io6/4, vi iø6/5, V 2/V, I maj7,
V 4/3/IV , vi io7/vi, V/vi, v

Category 2: IV , i i Category 2: IV , IV 6, i i6/5, i i, i i7, I 6/4, i i6, V 6/5/V, IV maj7, vi io6/V,

IV maj6/5, vi7, i i2, V/V, V 6/V, vi iø7/V, IV maj2,
V 7/V, vi6/4, vi iø4/3/V, V 6/5/ i i, I 6

Category 3: V, vi io Category 3: V, V 7, V 6, vi io6, vi io, V 6/5, vi iø7, V 4/3, V 6/4, IV 6/4
F First-order func-

tional predictive
Category 1: I, vi, i i i Category 1: I, I 6, vi, i i i, vi6, i i i6, V 6/5/vi, vi iø7/V, vi6/4,

I maj7, IV 6/4, V/vi
Category 2: IV , i i Category 2: V 7, vi io6, V 6/5, V 2, vi iø7, V 4/3, V 6/vi, vi io,

vi iø4/3, vi io6/4, vi iø6/5, V 6/4, vi io7/vi
Category 3: V, vi io Category 3: V, IV , V 6, IV 6, i i6/5, i i, i i7, I 6/4, i i6, V 6/5/V , IV maj7,

vi io6/V, V 7/IV , IV maj6/5, V 6/5/IV , vi7, V 2/IV , i i2,
V/V, V 6/V, IV maj2, V 7/V, vi iø4/3/V, V 2/V, V 4/3/IV , V 6/5/ i i, v

Table 8. A comparison of our first-order predictive variant approach with the Hidden Markov Model (HMM) on two datasets 1A and dataset 12.
For both methods, for each chord c we chose the function f that maximizes the likelihood p(Fn = f |Cn = c) = p(Cn = c|Fn = f )p(Fn =
f )/p(Cn = c).

Method 3 Clusters: Dataset 1A 3 Clusters: Dataset 12

A First-order predictive. Category 1: I, vi, i i i Category 1: I, vi, V 2, i i i, vi6, V 7/IV , V 6/5/IV , V 6/vi, i i i6, V 2/IV ,
V 6/5/vi, vi iø4/3, vi io6/4, vi iø6/5, V 2/V, I maj7, V 4/3/IV , vi io7/vi ,
V/vi, v

Category 2: IV , i i Category 2: IV , IV 6, i i6/5, i i, i i7, I 6/4, i i6, V 6/5/V, IV maj7, vi io6/V,

IV maj6/5, vi7, i i2, V/V, V 6/V, vi iø7/V, V 7/V, IV maj2,
vi6/4, vi iø4/3/V, V 6/5/ i i, I 6

Category 3: V, vi io Category 3: V, V 7, V 6, vi io6, V 6/5, vi iø7, V 4/3, vi io, V 6/4, IV 6/4
B HMM Category 1: I, i i i Category 1: V, IV , V 6, V 6/5, i i, i i7, i i6, vi iø7, vi io, vi io6/4, IV maj2, v

Category 2: IV , i i, vi Category 2: I, V 7, vi io6, V 2, V 6/vi, i i i6, vi iø4/3, vi iø6/5, V 6/4, vi io7/vi
Category 3: V, vi io Category 3: I 6, vi, IV 6, i i6/5, I 6/4, i i i, V 6/5/V, V 4/3, IV maj7, vi6,

vi io6/V, V 7/IV , IV maj6/5, V 6/5/IV , vi7, V 2/IV , i i2, V 6/5/vi ,
V/V, V 6/V, vi iø7/V, V 7/V, vi6/4, vi iø4/3/V, V 2/V, I maj7,
V 4/3/IV , V/vi, V 6/5/ i i, IV 6/4

development of musical syntax, it should be reflected in the
distribution of chords. This could perhaps explain why we
were able to recover a considerable amount of musical struc-
ture even when we ignored everything but local chord dis-
tributions. But again, the question of relative importance of
perceptual and syntactical chord similarities requires further
systematic investigation.

Once again, we emphasize that our methods can work with
any type of surface representations – handmade inversion-
free roman numerals, Roman numerals with inversions, or
even sonorities extracted automatically from MIDI files. As
we saw in the results section, we have obtained similar re-
sults using a variety of repertoires, representations, and an-
notation methods. Here, too, the different assumptions made
during the preparation of corpora calls for future systematic

investigation: we hope that our methodology could serve as a
unified analytical layer which allows for systematic testing of
assumptions made durning initial corpus generation.

We close by returning to the empirical grounding of func-
tional language. For centuries, theorists and pedagogues have
been producing theories of ‘harmonic function’ without at-
tempting to ground these theories in either psychological ex-
periments or in statistical regularities of musical corpora. This
naturally raises a question as to the viability of the foundations
of these theories. Our results suggest that tonal function is
indeed learnable from statistical features of the musical stimu-
lus, and moreover that it is importantly involved in prediction,
or the formation of musical expectations. Furthermore, local
context (the statistical relation between adjacent chords) is
often sufficient to completely recover the standard functional
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categories. This is in line with psychological experiments that
show enhanced perceptual sensitivity to local harmonic cues
(for a review see Tillmann and Bigand (2004)).

At the very minimum, functional language has a place in
providing a simplified description of the patterns found in
actual music. A further step would be to determine the per-
ceptual relevance of this idea: for instance, we might consider
whether listeners are sensitive to functions emerging from
our formalism in the contexts of unfamiliar, artificial musical
languages; and if so, whether our techniques can help model
this process (see for example Loui (2012), Loui and Wessel
(2007) and Loui, Wessel and Kam (2010), demonstrating that
listeners can acquire specific preferences for music generated
by an artificial harmonic grammar).
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Appendix A. Details of implementation of the
Tishby et al. (1999) algorithm

Tishby et al. (1999) introduced a type of distributional clus-
tering method (Pereira et al. (1993)). The algorithm works
with the complexity measure of Table 1, case A, I (F; X) =
I (Cn; Fn), and any of the accuracy measures in Table 3,
cases A–E, but not with the functional predictive metric in
Table 3, case F. For the accuracy measures in Table 3, cases
A–E the accuracy is described by I (Y ′; F), where Y ′ is some
combination of one or more adjacent chords. Note that in this
case that the algorithm does not require as input the actual
sequences of chord tokens yn , but only the probability of
each sequence of chord-token and context. For the first-order
cases A and B in Table 3, this can be given by a histogram
of consecutive chords derived from the corpus. For the cases
of C–D in Table 3 it requires computing histograms of all
sequences of length three or four. As mentioned in part 1, the
central question in our approach is ‘for any given amount of
information loss, what categorization allows us to make the
most accurate predictions?’ Formally:

Problem 1. For all possible p(F |X) find one that maximizes
Ia(F) = I (F; Y ′) given that Ic(F) = I (F; X) ≤ I 0

C .

The constant I 0
c is a bound on the complexity which the cho-

sen solution I (F; X)will not exceed. To find the optimal curve
we scan a large sample of possible I 0

c s. This optimization
problem can be solved using the well-known trick of Lagrange
multipliers (Boyd & Vandenberghe, 2004). This trick relies on
the fact that all solutions of problem 1 are given as solutions
to the following problem:

Problem 2. For all possible p(F |X) find the one that mini-
mizes L′(F) ≡ I (F; X) − β I (F; Y ′).

Intuitively, the positive constant β determines the relative
importance of the conflicting objectives I (F; X) and I (F; Y ′).
This definition is almost identical to the combined score L(F)

introduced in Equation 17 of Section 1.9.
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The only difference is that we minimize the Lagrangian of
Problem 2 and in Section 1.9 we maximized the combined
score. Tishby et al. (1999) is an iterative algorithm for finding
the optimal theory for a given β. Here the inputs are p(X),
and p(Y ′|X) and the output is an optimal theory p(F |X). We
can interpret β as a constant representing the theorist’s relative
weighting of simplicity and accuracy; in practice we scan all
possible βs.

When the accuracy metric is a vector (for example Y ′ =
(Cn, Cn+1)), the sum over y′ scans all possible vector val-
ues (If Y ′ = (Cn, Cn+1); this requires considering all pairs
y′ = (cn, cn+1), where cn, cn+1 ∈ C). This computation is
exponential in the length of Y ′ as a vector, which is why we
mostly consider very short Y ′ in this article.

Algorithm 1 converges to a local minimum (the objective
of Problem 2), but there is no guarantee that it will converge as
well to the global minimum. However, if we want to find the
optimal curve, we can follow the ‘reverse deterministic ann-
ealing’ procedure discussed in Slonim, Friedman and Tishby
(2006) to obtain the optimal curve, which is a global minimum
for all β.

Algorithm 1 the Information bottleneck algorithm (Tishby et
al. 1999)
Input: p(y|x), p(x), β
Output: p( f |x)
Initialization: randomize p0 ( f |x)
Pseudo code: iterate the following equations:

1. pt ( f ) = ∑
x p(x)pt ( f |x)

2. pt (x | f ) = pt ( f |x) p(x)/pt ( f )
3. pt (y| f ) = ∑

x p (y|x) pt (x | f )

4. Zt (x, β) = ∑
f pt ( f ) exp

(
−β

∑
y p(y|x) log p(y|x)

pt (y| f )

)

5. pt+1 ( f |x) = pt ( f )
Zt (x,β)

exp
(
−β

∑
y p(y|x) log p(y|x)

pt (y| f )

)

Another version of the algorithm allows us to limit the
number of categories:

Problem 3. From all possible p(F |X) such that |F | = k find
one that minimizes: I (F; X) − β I (F; Y ′).

As discussed in Tishby et al. (1999), we go through all the
steps of Algorithm 1, but instead of using p(F |X) as a general
matrix of size |C | by |C | (where |C | is the number of surface
tokens) we use a matrix of size k by |C |. This always gives
p(F |X) with |F | = k, and the resulting algorithm converges
again to a local minimum. Here there is no simple way to
guarantee convergence to the global minimum. Therefore, in
practice we use simulated annealing (Kirkpatrick, Gelatt, &
Vecchi, 1983) with the optimization criterion of Problem 3
I (F; X) − β I (F; Y ) as a score function.

In theory, simulated annealing is not guaranteed to converge
to global minima. But when the problem is small and the
algorithm is given enough iterations a global optimum can
be obtained. This can be verified by running the algorithm
multiple times with different initial conditions. For small prob-
lems with a few hundred surface tokens it converges in a few
seconds to the global optimum. In this article, we determined
that no further solutions would be found even if we ran the
algorithm for several hours. Note that for continuous mul-
tivariate Gaussian distributions, Chechik, Globerson, Tishby
and Weiss (2005) provide an analytic solution to the informa-
tion bottleneck problem (the continuous version of algorithm
3) that finds the global maximum.

Importantly, this algorithm can be also used to find det-
erministic categorizations. Solving our problem with very
large β produces deterministic mappings (i.e. ones in which
p(F = f |X = x) is effectively 1 or 0 for each ( f, x) pairs);
this is because the exponent in pseudo-code line 5 (Algorithm
1, above) tends towards either 0 (for cases where x becomes a
member of category f ) or a large negative number (for cases
where x is not a member of category f ), hence p(F = f |X =
x) tends towards either 1 or 0. Therefore when we have large
β we can effectively compute the optimal solution for the
complexity metric given by the number of categories (as in
Table 2, case A). To obtain deterministic categorization to
k clusters such as those reported in the results section, we
choose large β (β > 100), and verify that we have achieved
the global maximum by multiple runs with different initial
conditions.

Functional predictive clustering (Table 3, case F)

If we apply functional predictive clustering (Table 3, case F),
we cannot use the Information Bottleneck algorithm. How-
ever, we can apply simulated annealing directly on the
Lagrangian:

L′ (F) = I (Fn; Cn) − β I (Fn; Fn+1).

This works either with deterministic (Definition 1) or proba-
bilistic categories (Definition 2). This is in fact a variant of the
algorithm proposed by Friedman and Goldberger (2013) for
the deterministic case. However, that this algorithm usually
converges much more slowly than in the Information Bottle-
neck case (in our simulations about 100 times slower) and is
also more sensitive to the problem of obtaining a local rather
than global minimum. That said, for pre-existing theories ac-
curacy and complexity are easily computable in the functional
predictive case; we simply apply the formulae in Tables 2
and 3.
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Appendix B. Additional tables of optimal deterministic categories

Table B1. Comparison of optimal functional labels of datasets 1–6 from three published works: Huron (2006), Temperley (2009) and Tymoczko
(2011a).

D
ow

nl
oa

de
d 

by
 [

15
8.

22
2.

15
4.

19
7]

 a
t 0

7:
47

 2
3 

Se
pt

em
be

r 
20

15
 



24 N. Jacoby et al.

Table B2. Comparison of optimal functional labels of datasets 7–11 from two published works: Rohrmeier and Cross (2008) and de Clercq and
Temperley (2011).
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Table B3. Comparison of optimal functional labels in datasets 12–14 from unpublished datasets by Dmitri Tymoczko.
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Table B4. Comparison of optimal functional labels of datasets 15–16 from unpublished datasets by Dmitri Tymoczko.
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