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Abstract
The mechanisms that support sensorimotor synchronization — that is, the temporal coordination
of movement with an external rhythm — are often investigated using linear computational models.
The main method used for estimating the parameters of this type of model was established in the
seminal work of Vorberg and Schulze (2002), and is based on fitting the model to the observed auto-
covariance function of asynchronies between movements and pacing events. Vorberg and Schulze also
identified the problem of parameter interdependence, namely, that different sets of parameters might
yield almost identical fits, and therefore the estimation method cannot determine the parameters
uniquely. This problem results in a large estimation error and bias, thereby limiting the explanatory
power of existing linear models of sensorimotor synchronization. We present a mathematical analysis
of the parameter interdependence problem. By applying the Cramér–Rao lower bound, a general lower
bound limiting the accuracy of any parameter estimation procedure, we prove that the mathematical
structure of the linear models used in the literature determines that this problem cannot be resolved
by any unbiased estimation method without adopting further assumptions. We then show that adding
a simple and empirically justified constraint on the parameter space — assuming a relationship
between the variances of the noise terms in the model — resolves the problem. In a follow-up paper
in this volume, we present a novel estimation technique that uses this constraint in conjunction with
matrix algebra to reliably estimate the parameters of almost all linear models used in the literature.
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1. Introduction

Precision in the timing of movements with respect to internally specified goals
and external events is essential for many forms of sequential behavior, including
music performance, dance, and sports such as rowing. Over the years, several
experimental paradigms, typically involving simple movements such as finger
taps, have been repeatedly used to study movement timing and sensorimotor
synchronization. The use of computational modeling in conjunction with these
paradigms provides a powerful approach for understanding the mechanisms
underlying timing and synchronization.

The current article is the first of two papers in this volume that address the
problem of estimating the parameters for linear sensorimotor synchronization
models. A concise description of the evolution of these models in the sensori-
motor synchronization literature is provided in the second paper (for a general
review of the sensorimotor synchronization literature, see Repp, 2005; Repp
& Su, 2013). Here we focus on the methodological limitations of previous
estimation techniques, while in the second paper (Jacoby et al., 2015) we
suggest a unified, efficient, and reliable method for parameter estimation of
almost all linear sensorimotor synchronization models extant in the literature.

Early efforts to model human movement timing targeted the simplest
paradigm, which entails a scenario in which the subject freely taps a finger in
the absence of an external stimulus. Often this is studied using a task where the
base tempo is given to the subject by an external metronome, which eventually
stops, while the subject is required to continue tapping. Early research using
this synchronization-continuation paradigm (e.g., Stevens, 1886) showed that
subjects are able to maintain the tempo with remarkable precision, leading to
the idea that humans have an internal ‘timekeeper’ akin to an adjustable metro-
nome-like cognitive process. Based on such data, Wing and Kristofferson (1973)
proposed that two different noise components contribute to the overall variabil-
ity of tapping: the variability of the internal timekeeper (σ2T ) and the variability
of motor delays (σ2M ), where the latter reflects the inherent inaccuracies of the
motor system. On this basis, they suggested that the next inter-stimulus interval
at tap number k + 1, Rk + 1 takes the form of the following equation:

Rk + 1 ¼ Tk +Mk + 1 � Mk ð1Þ

where Tk and Mk are the timekeeper and motor noise at tap k. Wing and
Kristofferson (1973) further assumed that Tk, and Mk are independent, and that
the mean of Tk satisfies E(Tk) ¼ τ, where τ is the experiment base tempo. Note
that this equation implies a specific correlation structure of the inter-response
intervals.
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The auto-covariance function (acvf ) of Rk, γR( j)�Cov(Rk, Rk + j), has the
following form:

γR 0ð Þ¼ Var Rkð Þ¼ σ2T + 2σ
2
M ð2Þ

γR 1ð Þ¼ Cov Rk , Rk + 1ð Þ¼ �σ2M ð3Þ

γR jð Þ¼ Cov Rk , Rk + j
� �¼ 0 for every j� 2 ð4Þ

This correlation structure can be used to extract the parameters of the model
by simply inputting the empirical estimates of the acvf, and then using
eqns (2) and (3) to extract the model’s parameters.

Two experimental observations from Wing and Kristofferson’s research are
noteworthy. First, motor variance does not scale with base tempo (for a review,
see Wing, 2002). Second, the timekeeper variance has been consistently found to
be larger (usually much larger) than the motor variance. As we will see shortly,
the second observation will be crucial for obtaining a reliable estimation
method.

Later work extended the Wing and Kristofferson model to sensorimotor
synchronization, namely, to a scenario where the subject synchronizes finger
taps with an isochronous metronome (Vorberg & Wing, 1996). To handle this
case, Vorberg and Wing (1996) and Vorberg and Schulze (2002) suggested the
following linear phase correction model:

Ak + 1 ¼ 1� αð ÞAk + Tk +Mk + 1 � Mk � Sk + 1 ð5Þ

where Sk is the inter-stimulus interval between the onset at beat number k and
the onset at beat number (k�1)1; Ak is asynchrony, namely the difference
between the response and the stimulus onsets at time k; and α is a phase
correction parameter. Note that by convention the asynchrony is negative when
the subject taps before the stimulus beat.

In fact, this model of sensorimotor synchronization is an amalgamation of
Wing and Kristofferson’s noise term with a hypothesized phase correction proc-
ess controlled by parameter α (phase correction constant). The same exact
model can be used for sequences of stimuli with occasional timing perturbations
(slight delays or advances of events), as long as the general tempo of the stimulus
remains constant (Repp et al., 2012). Tempo changing stimuli are discussed in
our second, companion paper (Jacoby et al., 2015).

1 Note the small inconsistency between this notation and the metronome intervals Cn as defined in
Vorberg and Schulze (2002): Cn ¼ Sn+1.
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For tapping experiments involving an isochronous metronome, Vorberg and
Schulze (2002) derived explicit analytical formulae for the auto-covariance
function (acvf ) of the asynchronies of model. They then extracted the model
parameters by computing the estimates from the empirical acvf. This method
also works for metronomes in which inter-onset intervals are stochastic
(sampled from independent and identically distributed random variables; see
Feller, 2008). However, if the metronome sequence has any other type of
structure (e.g. abrupt phase changes, as in the paradigm used in Repp et al.,
2012), there is no simple analytical solution. In this case the estimation process
is relatively slow, requiring one to compute the empirical acvf of the
asynchronies from the data and compare it with simulations.

Furthermore, the problem of parameter interdependence (Li et al., 1996) limits
the accuracy of this method (this has been analyzed by Vorberg & Schulze, 2002),
sometimes even rendering it impossible to use (Vorberg & Schulze, 2013).

Vorberg and Schulze used standard moment-estimation (Pearson, 1896) to find
the first terms of the empirical asynchrony acvf, which can then be matched with
the model predictions. This is effectively equivalent to searching the parameter
space until a good match is found, thereby estimating the unknown parameters.
The problem of parameter independence occurs when there is more than one
solution to this process. In this case, the method cannot determine which of the
possible solutions is correct, resulting in an increased estimation error.

Thus far it was unclear whether there might be another method based on a
different fitting procedure that allowed this ambiguity to be resolved. As we will
later see, the acvf method runs into difficulty exactly when the likelihood
function of the observed data is ‘flat’. Namely, that there is a relatively large zone
in the parameter space around the global maximum where the likelihood func-
tion ‘does not change too much’ (we will shortly formally define these concepts).

The likelihood function is generally defined as the probability (assuming a
model M) of the observed data (X) given the parameters (θ). Formally:

PM X jθð Þ ð6Þ

A natural candidate for the model’s fit is the point in the parameter space that
maximizes the likelihood function. Formally:

θ̂¼ argmaxθ PM X jθð Þ ð7Þ

Figure 1a schematically depicts a contour plot of the likelihood function in a
case where there is no large flat zone. In this case there is a small area in the
parameter space whose PM(X |θ) values approach the maximum.
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In the case of linear models, this maximum likelihood estimation procedure
results in an unbiased and reliable estimator, at least when the number of
samples is large (Ljung, 1998). However, computing this estimate in practice
might be non-trivial. Indeed, our companion paper (Jacoby et al., 2015) is
dedicated to developing a practical algorithm that approximates the maximum
likelihood estimator for this problem.

Figure 1b schematically depicts a contour plot of the likelihood function for a
more difficult scenario. In this case, there is a zone in the parameter space in
which PM(X |θ) obtains nearly maximal value, and therefore the maximum
likelihood estimator would fail in retrieving the correct parameter from the data
(it can pick any value in the ambiguous zone, and not necessarily the correct
parameters). This is similar to the difficulty encountered by the method that uses
moments estimates due to parameter interdependence.

A well-known result from the theory of statistics called the Cramér–Rao lower
bound (Rao, 1992; Cramér, 1999 — henceforth CRLB) asserts that in this case
there is no other unbiased estimation method that can succeed. Namely, the
CRLB points to a direct link between the property of the likelihood functions

Figure 1. Schematic illustration of the likelihood function of the model PM(X |θ). In this example,
the parameter space is two-dimensional θ ¼ (θ1, θ2). Colors in the contour plot correspond to the
values of PM(X |θ) where brighter colors represent higher values. In Fig. 1a there is relatively small
zone in the space where PM(X |θ) is close to the maximal value. Here the likelihood function yields
a single maximum and the ambiguity zone of parameter estimation is small (depicted with tilted
lines). Figure 1b represents a more difficult scenario. In this case there is a large zone where the
likelihood is close to the maximum. The ambiguity zone is large and in this case the Cramér–Rao
lower bound predicts a large estimation error. Figure 1c shows the effect of constraining the
parameter space. If we assume that parameters are necessarily restricted to a line (the diagonal
line L), then the ambiguity zone of values of the likelihood function close to the maximum is
significantly reduced. This figure is published in color in the online version.
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PM(X |θ) and any unbiased estimator. More precisely, the CRLB asserts that the
variance of the estimation error of any unbiased estimator (var g(X)) satisfies:

var g Xð Þ� 1
I θð Þ ð8Þ

where I(θ) is the Fisher information, defined as:

I θð Þ¼ �EX
@2log PM X jθð Þ

@θ2

� �
ð9Þ

Geometrically this means that when the likelihood function (and therefore also
the logarithm of the likelihood function) is ‘flat’ as in Fig. 1b, there is a small
increase in the rate of change of the log-likelihood function near the maximal
value. This results in a small second derivative of the log-likelihood function. In
this case, the CRLB asserts a large estimation error [eqn. (8)].

Figure 1c illustrates how constraining the parameter space could remediate
the effect of this problem. If we further assume some limitation on the geometric
structure of the problem (in the figure we assume that θ is constrained to the
line L), then the likelihood function constrained to this subspace is no longer
‘flat’ and has a smaller ambiguity zone. In this case, the maximal likelihood
estimator will result in one uniquely defined solution. Note however that if the
assumption used is ‘wrong’ in the sense that it does not really hold for the data,
then even larger estimation errors could be generated, due to the fact that the
search space is reduced to a sub-space that does not contain the real solution.

As we will see shortly, it is possible to supplement linear sensorimotor synchro-
nization models with an empirically justified assumption that acts exactly like the
line L in Fig. 1c. This single assumption removes the redundancy from the likeli-
hood function and therefore resolves the problem in the estimation procedure.

In the current study, we applied the CRLB to show that any method of
estimating the linear phase correction model parameters is prone to failure
unless further assumptions are made. We next demonstrate that the CRLB
predicts the magnitude of the estimation error of the method based on estima-
tion of moments, and provides a measure of the magnitude of the problem
created by parameter interdependence. We propose a solution to this problem
by showing that a reliable estimate can be obtained if the simple assumption
that the motor variance is smaller than the timekeeper variance is adopted:

σ2M < σ2T ð10Þ
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We show that a modified version of the original estimation method that relies on
this assumption no longer suffers from parameter interdependence, and provides
an unbiased estimator of phase correction and timekeeper and motor noise
variance. In the case of the moments estimation method, this means that
interdependence problem is generated from points in parameter space in which
σ2M < σ2T . If we ignore these points, there is no parameter interdependence, and
the original estimation procedure works.

We end by comparing these results with results obtained using a novel
estimation method termed bounded Generalized Least Squares (bGLS), devel-
oped in the companion paper (Jacoby et al., 2015). Using the constraint of
eqn. (10) in conjunction with the tools of matrix algebra, this method can
reliably estimate the parameters of most linear models described in the literature
(e.g., Hary & Moore, 1987a, b; Mates, 1994a, b; Michon, 1967; Schulze et al.,
2005; Vorberg & Wing, 1996).

2. The acvf Method for Estimating the Parameters of the Phase
Correction Model

The parameters of the phase correction model can be estimated using the
empirical acvf. This leads to the following simple method, which is depicted
schematically in Fig. 2 (see Vorberg & Schulze, 2002; Vorberg & Wing, 1996).

Algorithm 1 – the acvf method
Input: nseq sequences of N asynchronies {Ak¼1 . . . N}i ¼ 1 . . . nseq.

Output: the estimated parameters α, σT , σMð Þ.
1. Compute the mean over the nseq sequences of the biased acvf estimator:

γ̂A kð Þ¼ 1
N�kΣ

N�k
t At � E Að Þ½ � At�k � E Að Þ½ �

2. Perform a numerical search over parameter θ¼(α, σT, σM). For each
θ ¼ (α, σT, σM):

i. Compute the asymptotic acvf: γA 0ð Þ¼ σ2T + 2ασ
2
M

1� 1�αð Þ2 ;

γA kð Þ¼ 1�αð Þσ2T + 2 1�αð Þασ2M
1� 1�αð Þ2 � σ2M

h i
1 � αð Þk�1 for k> 0.

ii. Use E γ̂A kð Þ½ � ¼ γA kð Þ � 2
N N�kð ÞΣ

N
i¼1Σ

N�k
j¼1 γA i � jð Þ + 1

N2ΣN
i¼1Σ

N
j¼1γA i � jð Þ,

and compute the mean of the biased estimator.

iii. Find θ such that S θð Þ¼Σm
k¼0 γ̂A kð Þ � E γ̂A kð Þ½ �f g2 is minimized (m ¼ 2).

3. Performance of the acvf Method

Figure 3 shows the mean and standard deviation of the estimation for
parameters (α, σ2T , σ

2
MÞ based on 1000 iterations of the process obtained by the

acvf method, for multiple values of α (on the x-axis). The dashed line represents
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the correct value of the parameter, and the diamond represents the data from
Table 1 in Vorberg and Schulze (2002) (α¼ 0:2, σ2T ¼ 100, σ2M ¼ 25Þ. Note that
nseq ¼ 15, as in the second line of Vorberg and Schulze’s Table 1.

The first observation is that the results obtained with the acvf method with
α ¼ 0.2 are identical to the results reported in Table 1 in Vorberg and Schulze
(2002). This was to be expected, since this algorithm was used to create this
table. The estimate at this point is very accurate and the mean of α, σ2T , and σ2M
in our simulation (0.2084, 103.14, and 24.25, respectively) is similar to the
mean reported in Vorberg and Schulze’s Table 1 (0.193, 100.80, and 25.13,
respectively). Our standard deviation of the estimate for σ2T and σ2M (0.0705,
21.94, and 13.07, respectively) is also similar to that of Vorberg and Schulze
(0.067, 21.3, and 12.0, respectively).

However, for some alpha values, the estimator clearly become biased and the
estimation error increases. Such inaccuracies have been reported previously in
the literature; see for example Diedrichsen et al. (2003), and Vorberg and Wing
(1996). Vorberg and Schulze (2002) argued that the estimates for the different
parameters become interdependent, and that the acvf for different parameters is
similar, thus resulting in numerical instability. Vorberg and Wing (1996) noted
that this phenomenon occurs around α � αOPT (the alpha value that minimizes

Figure 2. Schematic illustration of acvf method for parameter estimation of the phase correction
model. The input of this procedure is nseq sequences of N taps. From this data we can compute the
empirical estimate of the auto-covariance function (acvf ): γ̂A kð Þ. To find the fitted parameters we
scan the parameter space (all possible α, σM, σT values) and for each parameter compute the
theoretical asymptotic acvf: γA(k). We further compute the mean of the biased estimator: E γ̂A kð Þ½ �.
We then select the parameters that provide the best fit to the score function S(θ). This figure is
published in color in the online version.
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the asynchrony variance for given parameters σ2T and σ2M ). Note that empirical
research shows that subjects tend to adjust their alpha towards the optimal
value (Repp et al., 2012; Wing et al., 2014). Thus, we expected that the param-
eter estimated in real experiments would be near the optimal value, exactly
where the estimation procedure may be considerably inaccurate.

However, it remains unclear whether this is a particular problem of the
methods applied, or whether there is some limitation on the accuracy of
the estimation that applies to all estimation methods.

Figure 3. Simulation results of parameter estimation using the acvf method. In these simulations,
we scanned multiple values of α, while setting σ2T ¼ 100 and σ2M ¼ 25. For each α we computed
1000 iterations of the simulation and estimated α (top figure, thick line), the timekeeper variance
(middle figure, thick line), and the motor variance (bottom figure, thick line). In each graph the
correct underlying parameters were plotted as the dashed line. For example, in the top diagram the
dashed line is defined by the equation ‘estimated α ¼ true α’. In addition, we plotted the results of
Vorberg and Schulze’s (2002) Table 1 (diamonds). Error bars represent standard deviation of the
estimates. We also computed the standard deviation and bias for the special value αOPT � 0.828
(the α value that minimized the asynchrony variance for given parameters σ2T and σ2M ; Vorberg &
Wing, 1996). This figure is published in color in the online version.

Timing & Time Perception (2015) DOI:10.1163/22134468-00002047 9



We now show that all unbiased estimators suffer from a quantifiable accu-
racy limitation, and therefore the numerical problem in the estimation process
cannot be bypassed by unbiased estimators unless further assumptions are
made.

4. The Cramér–Rao Lower Bound Limits any Unbiased Estimation Method

It is useful to rewrite the phase correction model as an ARMA model (see
Diedrichsen et al., 2003):

The model:

Ak + 1 ¼ 1 � αð ÞAk + Tk +Mk + 1 � Mk � Sk + 1 ð11Þ

can be written as an ARMA(1,1) model:

Ak + 1 ¼ �aAk + λ �Wk + 1 + λc �Wk + τ ð12Þ

where c¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r 2 + rð Þp � r � 1, r¼ σ2T=2σ

2
M , a ¼ α � 1, λ2 ¼ �σ2M=c, τ > 0 and

Wk is white Gaussian noise with unit variance (Diedrichsen et al., 2003).
Note that the new parameters satisfy the following conditions:

a¼ α � 1,

c¼ �2σ2M � σ2T + σT
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4σ2M + σ2T

p
2σ2M

,

λ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2σ4M
2σ2M + σ2T � σT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4σ2M + σ2T

p
s

The CRBL is a well-known mathematical limit to the variance of the estimation
error, as described in the introduction (see also Fig. 1). For the specific case of an
ARMA model, Friedlander (1984) derived an explicit formula for the bound.

Let us consider the following ARMA(n,m) model discussed in Friedlander
(1984):

Ak ¼ �
Xn
i¼1

aiAk� i + λ
Xm
i¼0

ciWk� i ; c0 ¼ 1 ð13Þ

where Wk is zero mean, unit-variance Gaussian white noise.
Note that when n¼1 and m¼1 this model is equivalent to the model

described by eqns (10) and (11) and has the following form:

Ak ¼ �aAk�1 + λ Wk + cWk�1ð Þ ð14Þ
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In the general case, given N ’ data points Ak where k ¼ 1, . . ., N 0, we want to
estimate the vector of the unknown parameters:

A,C, λ½ � ¼ a1, a2, . . . , an, c1, c2, . . . , cm, λ½ �, where A¼ a1, a2, . . . , an½ �T ,
C¼ c1, c2, . . . , cm½ �T .
MT is henceforth used to denote the transpose of a matrix M, and M�1

represents the inverse of a regular square matrix M (Strang, 2006).
Let Â, Ĉ, and λ̂ be an unbiased estimators (based on N 0 points) of A, C, and λ,

and let: A ̃, C ̃, and λ̃ be the estimation error: A ̃, C ̃, λ̃
� �¼ A, C, λ½ � � ½Â, Ĉ, λ̂�.

Then the following theorem limits the minimal estimation error:

Theorem (Friedlander, 1984)

var
A ̃
C ̃

� �
ÃT C̃T
� �	 


� 1
N 0

Rxx �Rxz
�Rxz Rzz

� ��1

¼ 1
N 0G ð15Þ

var λ̃
� �� λ2

2N 0 ð16Þ

var A ̃ð Þ� 1
N 0 Rxx � RxzR

�1
zz Rzx

� ��1¼ 1
N 0 FA ð17Þ

var C ̃ð Þ� 1
N 0 Rzz � RzxR

�1
xx Rxz

� ��1 ¼ 1
N 0 FC ð18Þ

where the matrices Rxz, Rxx, and Rzz can be computed from A and C, and for any
two matrices A and B, A� B if and only if A�B is a positive semi-definite matrix
(Strang, 2006).

In the specific case where n ¼ m:2

Rxx¼ A1A
T
1 � A2A

T
2

h i�1
ð19Þ

Rzz ¼ C1C
T
1 � C2C

T
2

h i�1
ð20Þ

Rzx ¼ A1C
T
1 � C2A

T
2

h i�1
ð21Þ

2 The general formula for n 6¼ m can be found in Friedlander (1984) and is not necessary for the
current discussion.
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where:

A1 ¼
1 0 ⋯ 0
a1 ⋱ ⋮
⋮ 0

aq�1 ⋯ a1 1

2
664

3
775; A2 ¼

aq 0 ⋯ 0
aq�1 ⋱ ⋮
⋮ 0
a1 ⋯ aq�1 aq

2
664

3
775 ð22Þ

C1 ¼
1 0 ⋯ 0
c1 ⋱ ⋮
⋮ 0

cq�1 ⋯ c1 1

2
664

3
775; C2 ¼

cq 0 ⋯ 0
cq�1 ⋱ ⋮
⋮ 0
c1 ⋯ cq�1 cq

2
664

3
775 ð23Þ

and q ¼ max(n, m) ¼ n ¼ m.
Applying the theorem for the case n ¼ 1 and m ¼ 1 results in:

A¼a, C¼c, A1¼ 1, A2¼ a, C1 ¼ 1, C2 ¼ c.

It follows that: Rxx ¼ (1 � a2)�1, Rzz ¼ (1 � c2)�1, Rzx ¼ (1 � ac)�1.
Therefore:

FA¼ Rxx � RxzR
�1
zz Rzx

� ��1 ¼ 1
1� a2

� 1 � c2ð Þ
1 � acð Þ2

" #�1

¼ 1�a2ð Þ 1�acð Þ2
1�acð Þ2� 1 � c2ð Þ 1 � a2ð Þ¼

1� a2ð Þ 1� acð Þ2
a � cð Þ2

ð24Þ

FC ¼ Rzz � RzxR
�1
xx Rxz

� ��1 ¼ 1
1 � c2ð Þ�

1 � a2ð Þ
1 � acð Þ2

" #�1

¼ 1� c2ð Þ 1 � acð Þ2
a � cð Þ2

ð25Þ

According to Friedlander (1984), from eqn. (17): var λ̃
� �� λ2

2N 0, the estimation of
λ is independent of the other parameters. This corresponds to the well-known
square root convergence of the estimate of the standard deviation.

However, the CRLB bound generates more complicated results when applied
to other parameters of the model.

Figure 4 shows the CRLB estimation for the prediction of the standard
deviation of the estimation error for parameters a and cffiffiffiffiffiffiffiffiffi

1
N 0 FA

q
and

ffiffiffiffiffiffiffiffi
1
N 0 FC

q
, respectively

� �
where N 0¼450. Here it can be seen that it

predicts large deviations when a� c.
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Figure 4 also shows the predicted deviations for the case σ2T ¼ 100, σ2M ¼ 25, and
α in the range from 0.1 to 1.2 (marked with diamonds). In this case,

c¼ �2σ2M �σ2T + σT
ffiffiffiffiffiffiffiffiffiffiffiffi
4σ2M + σ2T

p
2σ2M

ffi �0:1716, and the parameter a¼α�1 ranges

between �0.9 and 0.2. Note that if cffi�0.1716 then the singularity occurs
when a�c which corresponds to α ¼ a + 1ffi0.828¼αOPT.

Figure 5 shows the CRLB predictions, and compares the results to those
obtained for 100 simulations applying the acvf method (again we used the
parameters: σ2T ¼ 100, σ2M ¼ 25, N ¼ 30, nseq¼ 15Þ. Note that for the CRLB we
used N 0 ¼ nseq* N ¼ 30* 15 ¼ 450.

For alpha in the range of 0.1–0.6, there is agreement between the CRLB and
the variance obtained by the acvf method. The method is only slightly less
efficient than the predicted bound in this parameter range, which is to be
expected because here the estimation method is unbiased, and therefore
must have equal or slightly larger standard error than the CRLB. Around

Figure 4. Contour plot of the predicted CRLB standard deviation of the estimation error for
ffiffiffiffiffiffiffiffiffi
1
N 0 FA

q
and

ffiffiffiffiffiffiffiffiffi
1
N 0 FC

q
when N0 ¼ 450. The x-axis is parameter a (determined by parameter α of the original

model) and the y-axis is parameter c (determined by σ2M , and σ2T ). The left and right figures show
the predicted estimation error for parameters a and c, respectively. The diamonds show the CRLB
computed for α value in the range of 0.1 to 1.2 and σ2T ¼ 100, σ2M ¼ 25 (or a ¼ α � 1 and
c ffi � 0.1716). Note that the prediction gets very large when a � c, therefore this graph only
displays CRLBs of less than 0.5. Note also that αOPT � 0.828 (the α value that minimized the
asynchrony variance for given parameters σ2T and σ2M ; Vorberg and Wing 1996) is in the center of
the problematic zone. This figure is published in color in the online version.
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the singularity point at FA (αOPT ¼ 0.828), the CRLB predicts the increase in the
variance of the estimation, as we can clearly see in Fig. 6. Note that for these
points, the acvf method provides biased results, and therefore the CRLB does not
directly predict the magnitude of the algorithm deviation. Note that the CRLB
applies solely to unbiased estimators, so these results do not contradict the
Friedlander (1984) formula.

Figure 5 shows also similar results for parameters σ2M and σ2T . Since σ
2
M and σ2T

are nonlinear functions of the model parameters c and λ, we cannot use the CRLB
formula directly.3 However, a relatively good estimate of the confidence interval
predicted by the CRLB can be obtained if we compute a confidence interval for
each parameter, based on perturbing each parameter (c, λ) by one standard

deviation, according to c	
ffiffiffiffiffiffiffiffi
1
N 0 FC

q
and λ	

ffiffiffiffiffiffiffiffiffiffi
1
2N 0 λ

2
q

and then apply the transfor-

mation equations below to the perturbed values:

σ2T ¼ λ2 1 + cð Þ2 ð26Þ

Figure 5. CRLB with estimated alphas based on simulation results (acvf method). The circle shapes
represents alpha estimates for acvf method. The thick lines represent the CRLB error estimates.
The diamonds show results from Vorberg and Schulze (2002) table 1. The simulations use the
same parameters as Fig. 4 (σ2T ¼ 100, σ2M ¼ 25, nseq ¼ 15, N ¼ 30). Error bars represent the
standard error of estimates. This figure is published in color in the online version.

3 It is possible to derive direct formulae of the bound for this case; however, this is beyond the scope
of this article.
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σ2M ¼ �λ2c ð27Þ

The result of this procedure is displayed in the two bottom panels of Fig. 5,
where the CRLB confidence interval predicts the simulation results quite well
when the estimators are unbiased.

These simulation results show that the CRLB provides a good prediction of
the estimation error when the estimator is unbiased, and provides an approxi-
mation of the estimation error when the estimator is biased. Furthermore, it
suggests that the acvf method is nearly optimal in performance for some values
of alpha. However, the CRLB also predicts the large estimation error of this
method for alpha near αOPT. These results fully characterize the expected esti-
mation error of the linear phase correction model.

Figure 6. A comparison of the acvf and bounded acvf method. We compared the simulation results
for the estimation of phase correction (top), timekeeper variance (middle), and motor variance
(bottom). The simulations use the same parameters as Fig. 4 (σ2T ¼ 100, σ2M ¼ 25, nseq ¼ 15, N ¼
30). The bounded version (thick lines) outperforms the unbounded version (thin circles), and is
almost an unbiased estimator of the correct underlying parameters (dashed line). Error bars
represent the standard error of estimates. This figure is published in color in the online version.
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5. Solving the Estimation Problem with Additional Assumptions:
Circumventing the Problem Predicted by the CRLB

In the previous sections we identified and quantified the source of the inaccuracy
for the previous parameter estimation methods. We showed that the relatively
large inaccuracy of the parameter estimation is not unique to these methods and
is in fact expected for any unbiased method. However, the analysis in the
previous section suggests a possible strategy to circumvent the problem. The idea
developed in this section is to use additional information about the parameter
range when computing the estimate, thereby avoiding the CRLB inaccuracy.

Recall that the linear phase correction model originated from the Wing and
Kristofferson (1973) model. In this context it is natural to assume that σ2T > σ2M
(see for example Vorberg & Wing, 1996; Wing, 2002; Wing & Kristofferson,
1973). This single assumption greatly impacts the accuracy of parameter estima-
tion. We can modify the acvf method to search only the parameter space that
satisfies the constraint. This algorithm that we call the ‘bounded acvf method’ is
completely identical to the standard acvf method but we constrained to θ values
that satisfy σM < σT. As explained in Fig. 1, constraining the parameter space
can reduce the ambiguity.

The bounded acvf method has almost the same running time as the standard
acvf method; however the estimation errors are much smaller. Note, however,
that if the assumption that σ2T > σ2M does not hold, there is a risk of an extremely
large estimation error; i.e., obtaining a severely biased estimator.

Figure 6 shows simulation results that compare the standard (un-bounded)
and bounded acvf method for the same set of parameters σ2T ¼ 100,
σ2M ¼ 25, nseq¼ 15, N ¼ 30.
For parameter α ¼ 0.2 from Table 1 in Vorberg and Schulze (2002) there is

not much difference between the methods, but when α approaches αOPT¼ 0.828
the bounded method is significantly better and unbiased.

This simple assumption (σ2T > σ2M )
4 and modification of the original algo-

rithm fully resolves the estimation problem, and the resulting bounded
algorithm is efficient and robust. Note that when the stimulus sequence has
large changes (transients) we cannot use the asymptotic formula and therefore

4 Note that according to Wing and Kristofferson (1973), it is to be predicted that σ2T > 2σ2M , which is
even a stronger. In this work we mostly use the weaker assumption σ2T > σ2M . We have also tested other
constraints, for example σ2T > kσ2M where k is a multiplier constant. When k is large (e.g., k ¼ 9), then
σ2T 
 σ2M . In a companion paper (Jacoby et al., 2015) we fully analyse this case and show that the model
then can be estimated with standard least squares (simple regression). We also show that while this does
produce bias, it is of relatively small magnitude. A multiplier smaller than 1 (e.g., σ2T >

1
2σ

2
M ) is not

enough to guarantee reliable estimates. We conclude that a multiplier of k ¼ 1, as we suggest, is a good
compromise between generality and estimation error magnitude. Note also that our simulations show
that applying the stronger assumption σ2T > 2σ2M has a negligible effect on performance.
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cannot use the method. Instead, we will present an efficient method for this case
in the companion paper (Jacoby et al., 2015).

6. Performance of the bounded General Least Squares method

In the companion paper (Jacoby et al., 2015), we develop a computational
procedure that is an efficient and unbiased estimator of the linear phase correc-
tion model. This method utilizes the same assumption about the relation
between motor and timekeeper variances, namely that σ2T > σ2M . The details of
this method are explained in the subsequent paper. Here we only report a select
few encouraging results obtained with the method. The advantage of this proce-
dure is that it applies to most general scenarios, including cases in which the acvf
method could be applied, while being even faster than bounded acvf method.
Figure 7 shows that this method performs similarly to the bounded acvf method.

Figure 7. Bounded acvf method (thick line) compared to the bGLS method (circles). The correct
underlying parameters are plotted as a dashed line. 1000 iterations were simulated for different α
values (x-axis) with parameters (σ2T ¼ 100 and σ2M ¼ 25, nseq ¼ 15, N ¼ 30). The top, middle, and
bottom graphs show the estimates for phase correction, timekeeper variance, and motor variance,
respectively. This figure is published in color in the online version.
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7. Conclusion

We used the CRLB to quantify the problem of large estimation errors of linear
phase correction models. Our approach proved that this problem cannot be
resolved by any estimation procedure without further assumptions. We showed
that adding a constraint on the parameter space, a simple assumption about the
relationship between the two noise components in the model, resolves the
problem.

Even though this paper was focused on analyzing the phase correction model,
other models that extend the phase correction model will also suffer from similar
problems. For example, the period correction model suggested by Schulze et al.
(2005) is a generalization of this model, and therefore has the same covariance
structure of noise parameters as in eqns (2)–(4). Estimation procedures for
this model are therefore also constrained by the same problem to an even larger
extent, since when more parameters are used the likelihood of redundancies in
the model increases. Even more importantly, the method based on moments
estimates (the acvf method) completely fails in the case of multi-person
ensemble synchronization, as in the dataset of Wing et al. (2014). This is due to
parameter interdependence and the inherited noise in the estimation of a multi-
dimensional acvf that is in this case necessary for the computation (Vorberg &
Schulze, 2013).

This issue is the starting point for the sequel to this paper in this volume. In
the next paper we show that the assumption that resolves the problem of
parameter interdependence for the phase correction model, also helps in
generating a reliable estimation procedure for period correction and ensemble
synchronization.
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